Abstract
Organic Lake is a shallow, marine-derived hypersaline lake in the Vestfold Hills, Antarctica that has the highest reported concentration of dimethylsulfide (DMS) in a natural body of water. To determine the composition and functional potential of the microbial community and learn about the unusual sulfur chemistry in Organic Lake, shotgun metagenomics was performed on size-fractionated samples collected along a depth profile. Eucaryal phytoflagellates were the main photosynthetic organisms. Bacteria were dominated by the globally distributed heterotrophic taxa Marinobacter, Roseovarius and Psychroflexus. The dominance of heterotrophic degradation, coupled with low fixation potential, indicates possible net carbon loss. However, abundant marker genes for aerobic anoxygenic phototrophy, sulfur oxidation, rhodopsins and CO oxidation were also linked to the dominant heterotrophic bacteria, and indicate the use of photo- and lithoheterotrophy as mechanisms for conserving organic carbon. Similarly, a high genetic potential for the recycling of nitrogen compounds likely functions to retain fixed nitrogen in the lake. Dimethylsulfoniopropionate (DMSP) lyase genes were abundant, indicating that DMSP is a significant carbon and energy source. Unlike marine environments, DMSP demethylases were less abundant, indicating that DMSP cleavage is the likely source of high DMS concentration. DMSP cleavage, carbon mixotrophy (photoheterotrophy and lithoheterotrophy) and nitrogen remineralization by dominant Organic Lake bacteria are potentially important adaptations to nutrient constraints. In particular, carbon mixotrophy relieves the extent of carbon oxidation for energy production, allowing more carbon to be used for biosynthetic processes. The study sheds light on how the microbial community has adapted to this unique Antarctic lake environment.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Abell GCJ, Bowman JP . (2005a). Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51: 265–277.
Abell GCJ, Bowman JP . (2005b). Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater. FEMS Microbiol Ecol 53: 379–391.
Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK . (2005). Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309: 2061–2064.
Bergmann DJ, Hooper AB, Klotz MG . (2005). Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evident for their evolutionary history. Appl Environ Microbiol 71: 5371–5382.
Bird MI, Chivas AR, Radnell CJ, Burton HR . (1991). Sedimentological and stable-isotope evolution of lakes in the Vestfold Hills, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 84: 109–130.
Bowman JP, McCammon SA, Lewis T, Skerratt JH, Brown JL, Nichols DS et al (1998). Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144: 1601–1609.
Bowman JP, McCammon SA, Rea SM, McMeekin TA . (2000). The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol Lett 183: 81–88.
Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T et al (2012). Global biogeography of SAR11 marine bacteria. Mol Syst Biol 8: 595.
Burke CM, Burton HR . (1988). Photosynthetic bacteria in meromictic lakes a stratified fjords of the Vestfold Hills, Antarctica. Hydrobiologia 165: 13–23.
Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP et al (2000). Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902–1906.
Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T et al (2002). Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 6872: 630–633.
Campbell BJ, Engel AS, Porter ML, Takai K . (2006). The versatile ɛ-proteobacteria: key players in sulfidic habitats. Nat Rev Microbiol 4: 458–468.
Charlson RJ, Lovelock JE, Andreae MO, Warren SG . (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326: 655–661.
Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A . (2005). Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7: 1104–1115.
Cottrell MT, Kirchman DL . (2009). Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75: 4958–4966.
Curran MAJ, Jones GB . (1998). Spatial distribution of dimethylsulfide and dimethylsulfonioproprionate in the Australasian sector of the Southern Ocean. J Geophys Res 103: 16 677–16 689.
Curson ARJ, Rogers R, Todd JD, Bearley CA, Johnston AWB . (2008). Molecular genetic analysis of a dimethysulfonioproprionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10: 757–767.
Curson ARJ, Todd JD, Sullivan MJ, Johnston AWB . (2011). Catabolism of dimethylsulphonioproprionate: microorganisms, enzymes and genes. Nat Rev Microbiol 9: 849–859.
Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C . (2008). Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12: 491–504.
Deprez PP, Franzmann PD, Burton HR . (1986). Determination of reduced sulfur gases in Antarctic lakes and seawater by gas chromatography after solid adsorbent preconcentration. J Chromatogr 362: 9–21.
Dobson SJ, Colwell RR, McMeekin TA, Franzmann PD . (1993). Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int J Syst Bacteriol 43: 77–83.
Dobson SJ, James SR, Franzmann PD, McMeekin TA . (1991). A numerical taxonomic study of some pigmented bacteria isolated from Organic Lake, an antarctic hypersaline lake. Arch Microbiol 156: 56–61.
Edwards KJ, Rogers DR, Wirsen CO, McCollom TM . (2003). Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl Environ Microbiol 69: 2906–2913.
Elshahed MS, Najar FZ, Aycock M, Qu C, Roe BA, Krumholz LR . (2005). Metagenomic analysis of the microbial community at Zodletone Spring (Oklahoma): Insights into the genome of a member of the novel candidate division OD1. Appl Environ Microbiol 71: 7598–7602.
Franzmann PD, Burton HR, McMeekin TA . (1987a). Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol 37: 27–34.
Franzmann PD, Deprez PP, Burton HR, van den Hoff J . (1987b). Limnology of Organic Lake, Antarctica, a meromictic lake that contains high concentrations of dimethyl sulfide. Aust J Mar Freshw Res 38: 409–417.
Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J . (2005). Prokaryotic sulfur oxidation. Curr Opin Microbiol 8: 253–259.
Fuhrman JA, Schwalbach MS, Stingl U . (2008). Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6: 488–494.
Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P et al (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42: 568–576.
Gibson JAE . (1999). The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarct Sci 11: 175–192.
Gibson JAE, Garrick RC, Franzmann PD, Deprez PP, Burton H . (1991). Reduced sulfur gases in saline lakes of the Vestfold Hills, Antarctica. Palaeogeo Palaeoclimatol Palaeoecol 84: 131–140.
Gibson JAE, Qiang XL, Franzmann PD, Garrick RC, Burton HR . (1994). Volatile fatty and dissolved free amino acids in Organic Lake, Vestfold Hills, East Antarctica. Polar Biol 14: 545–550.
Goberna M, Insam H, Franke-Whittle IH . (2009). Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl Environ Microbiol 75: 2566–2572.
Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL et al (2010). Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8: e1000358.
Gómez-Consarnau L, González JM, Coll-Lladó M, Gourdon P, Pascher T, Neutze R et al (2007). Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445: 210–213.
Hahn MW, Stadler P, Wu QL, Pöckl M . (2004). The filtration–acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57: 379–390.
Hahn MW . (2009). Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. Int J Syst Evol Microbiol 59: 112–117.
Harris JK, Kelley ST, Pace NR . (2004). New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70: 845–849.
Hatton AD, Shenoy DM, Hart MC, Mogg A, Green DH . (2012). Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea. Biogeochem 110: 131–146.
Howard EC, Sun S, Biers EJ, Moran MA . (2008). Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol 10: 2397–2410.
Huang L, Zhu S, Zhou H, Qu L . (2005). Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Microbiol Lett 242: 297–303.
Humayoun SB, Bano N, Hollibaugh JT . (2003). Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69: 1030–1042.
Huu NB, Denner EB, Ha DT, Wanner G, Stan-Lotter H . (1999). Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49: 367–375.
Hügler M, Sievert SM . (2011). Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu Rev Mar Sci 3: 261–289.
James SR, Burton HR, McMeekin TA, Mancuso CA . (1994). Seasonal abundance of Halomonas meridiana, Halomonas subglaciescola, Flavobacterium gondwanense and Flavobacterium salegens in four Antarctic Lakes. Antarct Sci 6: 325–332.
James SR, Dobson SJ, Franzmann PD, McMeekin TA . (1990). Halomonas meridiana, a new species of extremely halotolerant bacteria from Antarctic saline lakes. System Appl Microbiol 13: 270–278.
Johnston AWB, Todd JD, Sun L, Nikolaidou-Katsaridou MN, Curson ARJ, Rogers R . (2008). Molecular diversity of bacterial production of the climate changing gas, dimethyl sulphide, a molecule that impinges on local and global symbioses. J Exp Bot 59: 1059–1067.
Kang I, Lee K, Yang S-J, Choi A, Kang D, Lee YK et al (2012). Genome sequence of ‘Candidatus Aquiluna’ sp. strain IMCC13023, a marine member of the Actinobacteria isolated from an Arctic Fjord. J Bacteriol 194: 3550–3551.
Kirchman DL . (2002). The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39: 91–100.
Kraft B, Stous M, Tegetmeyer HE . (2011). Microbial nitrate respiration—genes, enzymes and environmental distribution. J Biotechnol 155: 104–117.
Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P, Hirsch P . (1999). Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49: 137–147.
Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D et al (2011). An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5: 879–895.
Laybourn-Parry J, Marshall WA, Marchant HJ . (2005). Flagellate nutritional versatility as a key to survival in two contrasting Antarctic saline lakes. Freshw Biol 50: 830–838.
Laybourn-Parry J, Pearce D . (2007). The biodiversity and ecology of Antarctic lakes: models for evolution. Phil Trans R Soc B 364: 2273–2289.
Ley RE, Turnbaugh PJ, Klein S, Gordon JI . (2006). Human gut microbes associated with obesity. Nature 444: 1022–1023.
Lovelock JE, Maggs RJ . (1972). Atmospheric dimethyl sulfide and the natural sulphur cycle. Nature 237: 452–453.
Man D, Wang W, Sabehi G, Aravind L, Post AF, Massana R et al (2003). Diversification and spectral tuning in marine proteorhodopsins. EMBO J 22: 1725–1731.
Matsuzaki M, Kubota K, Satoh T, Kunugi M, Ban S, Imura S . (2006). Dimethyl sulfoxide-respiring bacteria in Suribati Ike, a hypersaline lake, in Antarctica and the marine environment. Polar Biosci 20: 73–87.
Miyoshi T, Iwatuski T, Naguma T . (2005). Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2 μm-pore-size filters. Appl Environ Microbiol 71: 1084–1088.
Moran MA, Belas R, Schell MA, González JM, Sun F, Binder BJ et al (2007). Ecological genomics of marine Roseobacters. Appl Environ Microbiol 73: 4559–4569.
Moran MA, Miller WL . (2007). Resourceful heterotrophs make the most of light in the coastal ocean. Nat Rev Microbiol 5: 792–799.
Moran MA, Reisch CR, Kiene RP, Whitman WB . (2012). Genomic insights into bacterial DMSP transformations. Ann Rev Marine Sci 4: 523–542.
Ng C, DeMaere MZ, Williams TJ, Lauro FM, Raftery M, Gibson JAE et al (2010). Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J 4: 1002–1019.
Raina J-P, Dinsdale EA, Willis BL, Bourne DG . (2010). Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol 3: 101–108.
Redfield AC, Ketchum BH, Richards FA . (1963). The influence of organisms on the composition of seawater. In: Hill MN, (ed). The Sea. John Wiley and Sons: New York, pp 26–77.
Reisch CR, Moran MA, Whitman WB . (2011). Bacterial catabolism of dimethylsulfonioproprionate (DMSP). Front Microbiol 2: 1–12.
Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J et al (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3: 700–714.
Roberts NJ, Burton HR, Pitson GA . (1993). Volatile organic compounds from Organic Lake, an Antarctic hypersaline, meromictic lake. Polar Biol 13: 361–366.
Roberts NJ, Burton HR . (1993). Sampling volatile organics from a meromictic Antarctic lake. Polar Biol 13: 359–361.
Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S et al (2007). The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5: 398–431.
Röske K, Sachse R, Scheerer C, Röske I . (2012). Microbial diversity and composition of the sediment in the drinking water reservoir Saidenbach (Saxonia, Germany). Syst Appl Microbiol 35: 35–44.
Samsudin AA, Evans PN, Wright AG, Al Jassim R . (2011). Molecular diversity of the foregut bacteria community in the dromedary camel (Camelus dromedariusi). Environ Microbiol 13: 3024–3035.
Schmidtova J, Hallam SJ, Baldwin SA . (2009). Phylogenetic diversity of transition and anoxic zone bacterial communities within a near-shore anoxic basin: Nitinat Lake. Environ Microbiol 11: 3233–3251.
Schäfer H, Myronova N, Boden R . (2010). Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling sulphur in the biosphere. J Exp Bot 61: 315–334.
Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF . (2008). Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ Microbiol 10: 1039–1056.
Stefels J, Steinke M, Turner S, Malin G, Belviso S . (2007). Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modeling. Biogeochem 83: 245–275.
Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H et al (1999). Rumen bacterial diversity as determined by sequence analysis of 16S rDNA. FEMS Microbiol Ecol 29: 159–169.
Takahashi N, Sato T, Yamada T . (2000). Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis. J Bacteriol 182: 4704–4710.
Tang Y, Ji P, Hayashi J, Koike Y, Wu X, Kida K . (2011). Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding. Appl Microbiol Biotechnol 91: 1477–1461.
Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM et al (2012). Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336: 608–611.
Thomsen HA . (1988). Ultrastructural studies of the flagellate and cyst stages of Pseudopedinella tricostata (Pedinellales, Chrysophyceae). Brit Phycol J 23: 1–16.
Todd JD, Curson ARJ, Dupont CL, Nicholson P, Johnston AWB . (2009). The dddP gene, encoding a novel enzyme that converts dimethylsulfonioproprionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol 11: 1376–1385.
Todd JD, Curson ARJ, Kirkwood M, Sullivan MJ, Green RT, Johnston AWB . (2011). DddQ, a novel, cupin-containing, dimethylsulfonioproprionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 13: 427–438.
Todd JD, Curson ARJ, Nikolaidou-Kataraidou N, Brearley CA, Watmough NJ, Chan Y et al (2010). Molecular dissection of bacterial acrylate catabolism—unexpected links with dimethylsulfonioproprionate catabolism and dimethyl sulfide production. Environ Microbiol 12: 327–343.
Todd JD, Kirkwood M, Newton-Payne S, Johnston AWB . (2012). DddW, a third DMSP lyase in model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J 6: 223–226.
Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L et al (2007). Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315: 666–669.
Unrein F, Izaguirre I, Massana R, Balagué V, Gasol JM . (2005). Nanoplankton assemblages in maritime Antarctic lakes: characterisation and molecular fingerprinting comparison. Aquat Microb Ecol 40: 269–282.
Vincent WF, Howard-Williams C . (1994). Nitrate-rich inland waters of the Ross Ice Shelf region, Antarctica. Antarctic Sci 6: 339–346.
Wagner-Döbler I, Biebl H . (2006). Environmental biology of the marine Roseobacter lineage. Ann Rev Microbiol 60: 255–280.
Ward BB, Granger J, Maldonado MT, Casciotti KL, Harris S, Wells ML . (2005). Denitrification in the hypolimnion of permanently ice-covered Lake Bonney, Antarctica. Aquat Microb Ecol 38: 295–307.
Ward BB, Priscu JC . (1997). Detection and characterization of denitrifying bacteria from a permanently ice-covered Antarctic lake. Hydrobiologia 347: 57–68.
Webster-Brown J, Gall M, Gibson J, Wood S, Hawes I . (2010). The biogeochemistry of meltwater habitats in the Darwin Glacier region (80°S), Victoria Land, Antarctica. Antarct Sci 22: 646–661.
Wilkins D, Lauro FM, Williams TJ, DeMaere MZ, Brown MV, Hoffman JM et al (2013a). Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environ Microbiol 15: 1318–1333.
Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ et al (2013b). Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 37: 303–335.
Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ et al (2013). The role of planktonic Flavobacteria is processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol 15: 1302–1317.
Xing P, Hahn MW, Wu QL . (2009). Low taxon richness of bacterioplankton in high-altitude lakes of the eastern Tibetan Plateau, with a predominance of Bacteroidetes and Synechoccocus spp. Appl Environ Microbiol 75: 7017–7025.
Yamamoto M, Takai K . (2011). Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2: 1–8.
Yamane K, Hattori Y, Ohtagaki H, Fujiwara K . (2011). Microbial diversity with dominance of 16S rRNA genes sequences with high GC contents at 74 and 98°C subsurface crude oil deposits in Japan. FEMS Microbiol Ecol 76: 220–235.
Yanagibayashi M, Nogi Y, Li L, Kato C . (1999). Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiol Lett 170: 271–279.
Yau S, Lauro FM, DeMaere MZ, Brown MV, Thomas T, Raftery MJ et al (2011). Virophage control of antarctic algal host-virus dynamics. Proc Natl Acad Sci USA 108: 6163–6168.
Yilmaz P, Iversen MH, Hankeln W, Kottman R, Quast C, Glöckner FO . (2012). Ecological structuring of bacterial and archaeal taxa in surface ocean waters. FEMS Microbiol Ecol 81: 373–385.
Yoch DC . (2002). Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68: 5804–5815.
Zwartz D, Bird M, Stone J, Lambeck K . (1998). Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica. Earth Planet Sci Lett 155: 131–145.
Acknowledgements
This work was supported by the Australian Research Council and the Australian Antarctic Science program and undertaken with the assistance of resources provided at the NCI National Facility systems at the Australian National University through the National Computational Merit Allocation Scheme supported by the Australian Government. We acknowledge the assistance from the J Craig Venter Institute, and the Gordon and Betty Moore Foundation. We thank John Bowman for providing unpublished rhodopsin sequence data. We acknowledge those involved in the formal review process for their positive views and insightful comments. We acknowledge all financial support and any other personal connections.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest
Additional information
Supplementary Information accompanies this paper on The ISME Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Yau, S., Lauro, F., Williams, T. et al. Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake. ISME J 7, 1944–1961 (2013). https://doi.org/10.1038/ismej.2013.69
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2013.69
Keywords
This article is cited by
-
Diverse transformations of sulfur in seabird-affected sediments revealed by microbial and stable isotope analyses
Journal of Oceanology and Limnology (2023)
-
Remarkably coherent population structure for a dominant Antarctic Chlorobium species
Microbiome (2021)
-
Unique structure and function of viral rhodopsins
Nature Communications (2019)
-
Bacterial and archaeal communities inhabiting mussels, sediment and water in Indonesian anchialine lakes
Antonie van Leeuwenhoek (2018)
-
Links between bacteria derived from penguin guts and deposited guano and the surrounding soil microbiota
Polar Biology (2018)