Abstract
The archaeal phylum ‘Diapherotrites’ was recently proposed based on phylogenomic analysis of genomes recovered from an underground water seep in an abandoned gold mine (Homestake mine in Lead, SD, USA). Here we present a detailed analysis of the metabolic capabilities and genomic features of three single amplified genomes (SAGs) belonging to the ‘Diapherotrites’. The most complete of the SAGs, Candidatus ‘Iainarchaeum andersonii’ (Cand. IA), had a small genome (∼1.24 Mb), short average gene length (822 bp), one ribosomal RNA operon, high coding density (∼90.4%), high percentage of overlapping genes (27.6%) and low incidence of gene duplication (2.16%). Cand. IA genome possesses limited catabolic capacities that, nevertheless, could theoretically support a free-living lifestyle by channeling a narrow range of substrates such as ribose, polyhydroxybutyrate and several amino acids to acetyl-coenzyme A. On the other hand, Cand. IA possesses relatively well-developed anabolic capabilities, although it remains auxotrophic for several amino acids and cofactors. Phylogenetic analysis suggests that the majority of Cand. IA anabolic genes were acquired from bacterial donors via horizontal gene transfer. We thus propose that members of the ‘Diapherotrites’ have evolved from an obligate symbiotic ancestor by acquiring anabolic genes from bacteria that enabled independent biosynthesis of biological molecules previously acquired from symbiotic hosts. ‘Diapherotrites’ 16S rRNA genes exhibit multiple mismatches with the majority of archaeal 16S rRNA primers, a fact that could be responsible for their observed rarity in amplicon-generated data sets. The limited substrate range, complex growth requirements and slow growth rate predicted could be responsible for its refraction to isolation.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M et al. (2002). Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32: 402–407.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ . (1990). Basic local alignment search tool. J Mol Biol 215: 403–410.
Andam CP, Fournier GP, Gogarten JP . (2011). Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol Rev 35: 756–767.
Antoine E, Guezennec J, Meunier JR, Lesongeur F, Barbier G . (1995). Isolation and characterization of extremely thermophilic archaebacteria related to the genus Thermococcus from deep-sea hydrothermal guaymas basin. Curr Microbiol 31: 186–192.
Aono R, Sato T, Yano A, Yoshida S, Nishitani Y, Miki K et al. (2012). Enzymatic characterization of AMP phosphorylase and ribose-1,5-bisphosphate isomerase functioning in an Archaeal AMP metabolic pathway. J Bacteriol 194: 6847–6855.
Baker BJ, Banfield JF . (2003). Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44: 139–152.
Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD et al. (2010). Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci USA 107: 8806–8811.
Baker GC, Smith JJ, Cowan DA . (2003). Review and re-analysis of domain-specific 16S primers. J Microbiol Meth 55: 541–555.
Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N . (2011). Examining the global distribution of dominant archaeal populations in soil. ISME J 5: 908–917.
Benlloch S, Acinas SG, Antón J, López-López A, Luz SP, Rodríguez-Valera F . (2001). Archaeal biodiversity in crystallizer ponds from a solar Saltern: culture versus PCR. Microb Ecol 41: 12–19.
Benlloch S, Lopez-Lopez A, Casamayor EO, Ovreas L, Goddard V, Daae FL et al. (2002). Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4: 349–360.
Berdjeb L, Pollet T, Chardon C, Jacquet S . (2013). Spatio-temporal changes in the structure of archaeal communities in two deep freshwater lakes. FEMS Microbiol Ecol 86: 215–230.
Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM . (1997). Molecular phylogeny of Archaea from soil. Proc Natl Acad Sci USA 94: 277–282.
Bond PL, Smriga SP, Banfield JF . (2000). Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66: 3842–3849.
Bricheux G, Morin L, Le Moal G, Coffe G, Balestrino D, Charbonnel N et al. (2013). Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river. Microbiol Open 2: 402–414.
Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P . (2008). Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Micro 6: 245–252.
Cui H-L, Gao X, Sun F-F, Dong Y, Xu X-W, Zhou Y-G et al. (2010). Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 60: 1366–1371.
DeLong EF . (1992). Archaea in coastal marine environments. Proc Natl Acad Sci USA 89: 5685–5689.
Dick G, Andersson A, Baker B, Simmons S, Thomas B, Yelton AP et al. (2009). Community-wide analysis of microbial genome sequence signatures. Genome Biol 10: R85.
Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL . (2004). Characterization of Ferroplasma Isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70: 2079–2088.
Edwards KJ, Bond PL, Gihring TM, Banfield JF . (2000). An Archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287: 1796–1799.
Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L et al. (2008). A Korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA 105: 8102–8107.
Farag IF, Davis JP, Youssef NH, Elshahed MS . (2014). Global patterns of abundance, diversity and community structure of the Aminicenantes (candidate phylum OP8). PLoS One 9: e92139.
Feng Y, Lin X, Yu Y, Zhang H, Chu H, Zhu J . (2013). Elevated ground-level O3 negatively influences paddy methanogenic archaeal community. Sci Rep 3: 3193.
Fuhrman JA, McCallum K, Davis AA . (1992). Novel major archaebacterial group from marine plankton. Nature 356: 148–149.
Ghai R, Pašić L, Fernández AB, Martin-Cuadrado A-B, Mizuno CM, McMahon KD et al. (2011). New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1: 135.
Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D et al. (2005). Genome streamlining in a cosmopolitan oceanic bacterium. Science 309: 1242–1245.
Goh F, Jeon YJ, Barrow K, Neilan BA, Burns BP . (2011). Osmoadaptive strategies of the archaeon Halococcus hamelinensis Isolated from a hypersaline stromatolite environment. Astrobiology 11: 529–536.
Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ et al. (2012). Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3: e00252–12.
Gutell RR, Weiser B, Woese CR, Noller HF . (1985). Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32: 155–216.
Guy L, Ettema TJ . (2011). The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19: 580–587.
Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM et al. (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305: 1457–1462.
Hendry TA, de Wet JR, Dunlap PV . (2013). Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate. Environ Microbiol e-pub ahead of print 10 October 2013; doi:10.1111/1462-2920.12302.
Hu A, Jiao N, Zhang R, Yang Z . (2011). Niche partitioning of marine group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea. Appl Environ Microbiol 77: 7469–7478.
Huber G, Spinnler C, Gambacorta A, Stetter KO . (1989). Metallosphaera sedula gen, and sp. nov. Represents a new genus of aerobic, metal-mobilizing, thermoacidophilic Archaebacteria. Syst Appl Microbiol 12: 38–47.
Huber G, Huber R, Jones BE, Lauerer G, Neuner A, Segerer A et al. (1991). Hyperthermophilic archaea and bacteria occurring within Indonesian hydrothermal areas. Syst Appl Microbiol 14: 397–404.
Inoue K, Itoh T, Ohkuma M, Kogure K . (2011). Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 61: 942–846.
Itoh T, Suzuki K-i, Sanchez PC, Nakase T . (1999). Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49: 1157–1163.
Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA . (1992). Comparative physiological studies on hyperthermophilic Archaea isolated from deep-sea hot vents with emphasis on Pyrococcus strain GB-D. Appl Environ Microbiol 58: 3472–3481.
Jendrossek D, Handrick R . (2002). Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56: 403–432.
Jiao N, Zheng Q . (2011). The microbial carbon pump: from genes to ecosystems. Appl Environ Microbiol 77: 7439–7444.
Kanehisa M . (2002). The KEGG database. Novartis Found Symp 247: 91–101 discussion 101-103, 119-128, 244-152.
Karner MB, DeLong EF, Karl DM . (2001). Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409: 507–510.
Karp PD, Riley M, Paley SM, Pellegrini-Toole A . (2002). The MetaCyc Database. Nucleic Acids Res 30: 59–61.
Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA . (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543–546.
Lake JA, Henderson E, Oakes M, Clark MW . (1984). Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81: 3786–3790.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S et al. (2009). The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA 106: 15527–15533.
Leinonen R, Sugawara H, Shumway M . (2011). The sequence read archive. Nucleic Acids Res 39: D19–D21.
Lin X, McKinley J, Resch CT, Kaluzny R, Lauber CL, Fredrickson J et al. (2012). Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer. ISME J 6: 1665–1676.
Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD et al. (2013). Predominant archaea in marine sediments degrade detrital proteins. Nature 496: 215–218.
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C et al. (2010). CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39: D225–D229.
Massana R, Murray AE, Preston CM, DeLong EF . (1997). Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol 63: 50–56.
McLean JS, Lombardo M-J, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J et al. (2013). Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci USA 110: E2390–E2399.
Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M et al. (2008). The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinfomatics 9: 386.
Mikucki JA, Liu Y, Delwiche M, Colwell FS, Boone DR . (2003). Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69: 3311–3316.
Minegishi H, Mizuki T, Echigo A, Fukushima T, Kamekura M, Usami R . (2008). Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Systems 4: 16.
Minegishi H, Yamauchi Y, Echigo A, Shimane Y, Kamekura M, Itoh T et al. (2013). Halarchaeum nitratireducens sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int J Syst Evol Microbiol 63: 4202–4206.
Mira A, Ochman H, Moran NA . (2001). Deletional bias and the evolution of bacterial genomes. Trends Genet 17: 589–596.
Moran NA, Wernegreen JJ . (2000). Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15: 321–326.
Moran NA, Plague GR, Sandstrom JP, Wilcox JL . (2003). A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proc Natl Acad Sci USA 100: 14543–14548.
Moya A, Pereto J, Gil R, Latorre A . (2008). Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 9: 218–229.
Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ et al. (2012). De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6: 81–93.
Navarro CA, von Bernath D, Jerez CA . (2013). Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46: 363–371.
Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M, McInerney JO et al. (2012). Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc Natl Acad Sci USA 109: 20537–20542.
Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T . (2011). Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3: 702–714.
Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H et al. (2011). Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39: 3204–3223.
Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C et al. (2014). Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 6: 76–93.
Oren A, Ginzburg M, Ginzburg BZ, Hochstein LI, Volcani BE . (1990). Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead sea. Int J Syst Bacteriol 40: 209–210.
Orphan VJ, Taylor LT, Hafenbradl D, Delong EF . (2000). Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66: 700–711.
Papadopoulos JS, Agarwala R . (2007). COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23: 1073–1079.
Podar M, Makarova K, Graham D, Wolf Y, Koonin E, Reysenbach A-L . (2013). Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol Direct 8: 9.
Portillo MC, Leff JW, Lauber CL, Fierer N . (2013). Cell size distributions of soil bacterial and archaeal taxa. Appl Environ Microbiol 79: 7610–7617.
Qiu H, Price DC, Weber APM, Reeb V, Chan Yang E, Lee JM et al. (2013). Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea. Curr Biol 23: R865–R866.
R Development Core Team. (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria.
Rawlings ND, Barrett AJ, Bateman A . (2014). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42: D503–D509.
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F et al. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature 499: 431–437.
Roberts DW . (2012). labdsv: Ordination and Multivariate Analysis for Ecology, R package version 1.5-0. http://cran.r-project.org/web/packages/labdsv/.
Saier MH, Reddy VS, Tamang DG, Västermark Å . (2014). The transporter classification database. Nucleic Acids Res 42: D251–D258.
Sakai S, Imachi H, Sekiguchi Y, Ohashi A, Harada H, Kamagata Y . (2007). Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73: 4326–4331.
Schönknecht G, Chen W-H, Ternes CM, Barbier GG, Shrestha RP, Stanke M et al. (2013). Gene transfer from Bacteria and Archaea facilitated evolution of an extremophilic eukaryote. Science 339: 1207–1210.
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H . (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407: 81–86.
Silveira CB, Cardoso AM, Coutinho FH, Lima JL, Pinto LH, Albano RM et al. (2013). Tropical aquatic archaea show environment-specific community composition. PLoS One 8: e76321.
Stamatakis A . (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.
Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM et al. (2013). Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA 110: 11463–11468.
Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK . (2001). Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67: 5750–5760.
Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson A-S, Wernegreen JJ et al. (2002). 50 million years of genomic stasis in endosymbiotic bacteria. Science 296: 2376–2379.
Tatusov RL, Galperin MY, Natale DA, Koonin EV . (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28: 33–36.
Tripathi BM, Kim M, Lai-Hoe A, Shukor NAA, Rahim RA, Go R et al. (2013). pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol Ecol 86: 303–311.
Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach A-L . (1999). Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 65: 4375–4384.
Vila-Costa M, Barberan A, Auguet JC, Sharma S, Moran MA, Casamayor EO . (2013). Bacterial and archaeal community structure in the surface microlayer of high mountain lakes examined under two atmospheric aerosol loading scenarios. FEMS Microbiol Ecol 84: 387–397.
Vishnivetskaya TA, Fisher LS, Brodie GA, Phelps TJ . (2013). Microbial communities involved in biological ammonium removal from coal combustion wastewaters. Microb Ecol 66: 49–59.
Visse R, Nagase H . (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92: 827–839.
Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ et al. (2010). Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 107: 8818–8823.
Walsh DA, Papke RT, Doolittle WF . (2005). Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7: 1655–1666.
Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M et al. (2003). The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100: 12984–12988.
Wernegreen JJ . (2002). Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3: 850–861.
Whitaker RJ, Grogan DW, Taylor JW . (2003). Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301: 976–978.
Williams TA, Foster PG, Nye TM, Cox CJ, Embley TM . (2012). A congruent phylogenomic signal places eukaryotes within the Archaea. Proc Biol Sci 279: 4870–4879.
Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC et al. (2012). Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337: 1661–1665.
Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW . (2012). Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78: 7626–7637.
Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ et al. (2013). Genome of the anaerobic fungus Orpinomyces sp. C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79: 4620–4634.
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R et al. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608–1615.
Zuker M . (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415.
Acknowledgements
This work was supported by the National Science Foundation Microbial Observatories Program (Grant EF0801858).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies this paper on The ISME Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Youssef, N., Rinke, C., Stepanauskas, R. et al. Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diapherotrites’. ISME J 9, 447–460 (2015). https://doi.org/10.1038/ismej.2014.141
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2014.141
This article is cited by
-
Effects of marine sediment as agricultural substrate on soil microbial diversity: an amplicon sequencing study
Environmental Microbiome (2023)
-
Genomic evidence of functional diversity in DPANN archaea, from oxic species to anoxic vampiristic consortia
ISME Communications (2022)
-
Microbial biomarkers as indication of dynamic and heterogeneous urban water environments
Environmental Science and Pollution Research (2022)
-
Characteristics of the Archaeal Communities in Petroleum Hydrocarbon-Contaminated Groundwater
Water, Air, & Soil Pollution (2022)
-
Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea)
The ISME Journal (2019)