Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW . (2014). Bacterial vesicles in marine ecosystems. Science 343: 183–186.
Brum R, Schenck RO, Sullivan MB . (2013). Global morphological analysis of marines viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J 7: 1738–1751.
Cortez D, Forterre P, Gribaldo S . (2009). A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol 10: R65.
Danovaro R, Corinaldesi C, Dell'anno A, Fuhrman JA, Middelburg JJ, Noble RT et al. (2011). Marine viruses and global climate change. FEMS Microbiol Rev 35: 993–1034.
Deatherage BL, Cookson BT . (2012). Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infect Immun 80: 2012.
Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM et al. (2008). Functional metagenomic profiling of nine biomes. Nature 452: 629–632.
Enav H, Mandel-Gutfreund Y, Béjà O . (2014). Comparative genomic analyses reveal viral-induced shifts of host metabolism toward nucleotide biosynthesis. Microbiome 2: 9.
Forterre P . (2013). The virocell concept and environmental microbiology. ISME J 7: 233–236.
Forterre P, Soler N, Krupovic M, Marguet E, Ackermann HW . (2013). Fake virus particles generated by fluorescence microscopy. Trends Microbiol 21: 1–5.
Gaudin M, Gauliard E, Schouten S, Houel-Renault L, Lenormand P, Marguet E et al. (2013). Hyperthermophilic archaea produce membrane vesicles that can transfer DNA. Environ Microbiol Rep 5: 109–116.
Gaudin M, Krupovic M, Marguet E, Gauliard E, Cvirkaite-Krupovic V, Le Cam E et al. (2014). Extracellular membrane vesicles harbouring viral genomes. Environ Microbiol 16: 1167–1175.
Hagemann S, Stöger L, Kappelmann M, Hassl I, Ellinger A, Velimirov B . (2013). DNA-bearing membrane vesicles produced by Ahrensia kielensis and Pseudoalteromonas marina. J Basic Microbiol doi:10.1002/jobm.201300376.
Koonin EV, Dolja VV . (2014). Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 78: 278–303.
Kristensen DM, Mushegian AR, Dolja VV, Koonin EV . (2010). New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18: 11–19.
Lang AS, Zhaxybayeva O, Beatty JT . (2012). Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 10: 472–482.
Meckes Jr DG, Raab-Traub N . (2011). Microvesicles and viral infection. J Virol 85: 12844–12854.
Patel A, Noble RT, Steele JA, Schwalbach MS, Hewson I, Fuhrman JA . (2007). Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat Protoc 2: 269–276.
Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA,. (2010) 107: 6328–6333.
Renelli M, Matias V, Lo RY, Beveridge TJ . (2004). DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150: 2161–2169.
Roux S, Krupovic M, Debroas D, Forterre P, Enault F . (2013). Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences. Open Biol 3: 130160.
Schooling SR, Beveridge TJ . (2006). Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188: 5945–5957.
Soler N, Marguet E, Verbavatz JM, Forterre P . (2008). Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. Res Microbiol 159: 390–399.
Soler N, Gaudin M, Marguet E, Forterre P . (2011). Plasmids, viruses and virus-like membrane vesicles from Thermococcales. Biochem Soc Trans 39: 36–44.
Suttle CA . (2007). Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5: 801–812.
Velimirov B, Hagemann S . (2011). Mobilizable bacterial DNA packaged into membrane vesicles induces serial transduction. Mob Genet Elements 1: 80–81.
Yaron S, Kolling GL, Simon L, Matthews KR . (2000). Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microbiol 66: 4414–4420.
Acknowledgements
PF was supported by an ERC grant from the European Union's Seventh Framework Programme (FP/2007-2013)/Project EVOMOBIL—ERC Grant Agreement no.340440.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Soler, N., Krupovic, M., Marguet, E. et al. Membrane vesicles in natural environments: a major challenge in viral ecology. ISME J 9, 793–796 (2015). https://doi.org/10.1038/ismej.2014.184
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2014.184
This article is cited by
-
Identifying and tracking mobile elements in evolving compost communities yields insights into the nanobiome
ISME Communications (2023)
-
Novel Marine Organism-Derived Extracellular Vesicles for Control of Anti-Inflammation
Tissue Engineering and Regenerative Medicine (2021)
-
Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus
The ISME Journal (2020)
-
Bacterial bug-out bags: outer membrane vesicles and their proteins and functions
Journal of Microbiology (2020)
-
Trophic Conditions Influence Widespread Distribution of Aster-Like Nanoparticles Within Aquatic Environments
Microbial Ecology (2020)