Abstract
Evolutionary adaptations for the exploitation of nutritionally challenging or toxic host plants represent a major force driving the diversification of phytophagous insects. Although symbiotic bacteria are known to have essential nutritional roles for insects, examples of radiations into novel ecological niches following the acquisition of specific symbionts remain scarce. Here we characterized the microbiota across bugs of the family Pyrrhocoridae and investigated whether the acquisition of vitamin-supplementing symbionts enabled the hosts to diversify into the nutritionally imbalanced and chemically well-defended seeds of Malvales plants as a food source. Our results indicate that vitamin-provisioning Actinobacteria (Coriobacterium and Gordonibacter), as well as Firmicutes (Clostridium) and Proteobacteria (Klebsiella) are widespread across Pyrrhocoridae, but absent from the sister family Largidae and other outgroup taxa. Despite the consistent association with a specific microbiota, the Pyrrhocoridae phylogeny is neither congruent with a dendrogram based on the hosts’ microbial community profiles nor phylogenies of individual symbiont strains, indicating frequent horizontal exchange of symbiotic partners. Phylogenetic dating analyses based on the fossil record reveal an origin of the Pyrrhocoridae core microbiota in the late Cretaceous (81.2–86.5 million years ago), following the transition from crypt-associated beta-proteobacterial symbionts to an anaerobic community localized in the M3 region of the midgut. The change in symbiotic syndromes (that is, symbiont identity and localization) and the acquisition of the pyrrhocorid core microbiota followed the evolution of their preferred host plants (Malvales), suggesting that the symbionts facilitated their hosts’ adaptation to this imbalanced nutritional resource and enabled the subsequent diversification in a competition-poor ecological niche.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Accession codes
References
Abe Y, Mishiro K, Takanashi M . (1995). Symbiont of brown-winged green bug. Plautia-Stali Scott. Jpn J Appl Entomol Zool 39: 109–115.
Aharon Y, Pasternak Z, Ben Yosef M, Behar A, Lauzon C, Yuval B et al. (2013). Phylogenetic, metabolic, and taxonomic diversities shape mediterranean fruit fly microbiotas during ontogeny. Appl Environ Microbiol 79: 303–313.
Ahmad I, Schaefer CW . (1987). Food plants and feeding biology of the Pyrrhocoroidea (Hemiptera). Phytophaga 1: 75–92.
Aitzetmuller K, Vosmann K . (1998). Cyclopropenoic fatty acids in gymnosperms: the seed oil of Welwitschia. J Am Oil Chem Soc 75: 1761–1765.
Allen E, Johnson AR, Fogerty AC, Pearson JA, Shenstone FS . (1967). Inhibition by cyclopropene fatty acids of the desaturation of stearic acid in hen liver. Lipids 2: 419–423.
Ari Noriega J, Huay Lee JS . (2010). Predation on onthophagus Rutilans sharp (Coleoptera: Scarabaeidae) by Dindymus albicornis (Fabricius) (Hemiptera: Pyrrhocoridae). Boletin de la SEA 46: 609–610.
Bagley ST . (1985). Habitat association of Klebsiella species. Infect Control 6: 52–58.
Bandi C, Sironi M, Damiani G, Magrassi L, Nalepa CA, Laudani U et al. (1995). The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. P Roy Soc B-Biol Sci 259: 293–299.
Bennett GM, Moran NA . (2013). Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol 5: 1675–1688.
Bentz C, Kallenborn HG . (1995). Fine-structure of the gastric ceca of the cotton stainer Dysdercus-Intermedius (Heteroptera, Pyrrhocoridae). Entomol Gen 20: 27–36.
Borkott H, Insam H . (1990). Symbiosis with bacteria enhances the use of chitin by the springtail, Folsomia-Candida (Collembola). Biol Fertil Soils 9: 126–129.
Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF . (2001). M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. BioTechniques 31: 24–28.
Breznak JA, Brune A . (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39: 453–487.
Buchner P . (1965) Endosymbiosis of Animals with Plant Microorganisms. Interscience publishers: : New York, USA.
Cakmakci ML, Evans HJ, Seidler RJ . (1981). Characteristics of nitrogen-fixing Klebsiella oxytoca isolated from wheat roots. Plant and Soil 61: 53–63.
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R . (2010a). PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 266–267.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al. (2010b). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336.
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y et al. (2014). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42: D633–D642.
Dowd PF . (1989). Insitu production of hydrolytic detoxifying enzymes by symbiotic yeasts in the cigarette beetle (Coleoptera, Anobiidae). J Econ Entomol 82: 396–400.
Douglas AE . (2009). The microbial dimension in insect nutritional ecology. Funct Ecol 23: 38–47.
Drummond AJ, Rambaut A . (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.
Ebert D . (2013). The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst 44: 623–643.
Edgar RC . (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.
Ehrlich PR, Raven PH . (1964). Butterflies and plants - a study in coevolution. Evolution 18: 586–608.
Farrell BD, Mitter C . (1994). Adaptive radiation in insects and plants - time and opportunity. Am Zool 34: 57–69.
Fu L, Niu B, Zhu Z, Wu S, Li W . (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28: 3150–3152.
Fukatsu T, Hosokawa T . (2002). Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol 68: 389–396.
Genta FA, Dillon RJ, Terra WR, Ferreira C . (2006). Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol 52: 593–601.
Glasgow H . (1914). The gastric cæca and the cæcal bacteria of the Heteroptera. Biol Bull 26: 101–170.
Goel AP, Chatterjee VC . (2003). On the digestive tract of Odontopus nigricornis Stal (Heteroptera: Pyrrhocoridae) and survival time during starvation. Uttar Pradesh J Zool 23: 97–99.
Haas F, König H . (1987). Characterisation of an anaerobic symbiont and the associated aerobic bacterial flora of Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). FEMS Microbiol Lett 45: 99–106.
Hall TA . (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ . (2008). The role of butyrate on colonic function. Aliment Pharmacol Ther 27: 104–119.
Hansen AK, Moran NA . (2014). The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23: 1473–1496.
Henry TJ . (1997). Phylogenetic analysis of family groups within the infraorder Pentatomomorpha (Hemiptera: Heteroptera), with emphasis on the Lygaeoidea. Ann Entomol Soc Am 90: 275–301.
Hosokawa T, Kikuchi Y, Meng X, Fukatsu T . (2005). The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima. FEMS Microbiol Ecol 54: 471–477.
Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T . (2007). Obligate symbiont involved in pest status of host insect. P Roy Soc B-Biol Sci 274: 1979–1984.
Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Hironaka M, Fukatsu T . (2010). Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug Parastrachia japonensis. Appl Environ Microbiol 76: 4130–4135.
Hosokawa T, Kikuchi Y, Nikoh N, Fukatsu T . (2012). Polyphyly of gut symbionts in stinkbugs of the family Cydnidae. Appl Environ Microbiol 78: 4758–4761.
Hua J, Li M, Dong P, Cui Y, Xie Q, Bu W . (2008). Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta: Hemiptera: Heteroptera). BMC Genomics 9: 610.
Huber-Schneider L . (1957). Morphologische und physiologische untersuchungen an der wanze Mesocerus marginatus L. und ihren symbionten (Heteroptera). Zoomorphology 46: 433–480.
Huelsenbeck JP, Ronquist F . (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
Hussey RF . (1929) General Catalogue of the Hemiptera—Fascicle III: Pyrrhocoridae. Smith College: Northampton, MA, USA, 144 pp.
Ishak H, Plowes R, Sen R, Kellner K, Meyer E, Estrada D et al. (2011). Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb Ecol 61: 821–852.
Jackson RR, Barrion AT . (2002). Foraging behavior, distribution and predators of Dindymus pulcher Stal (Hemiptera: Pyrrhocoridae), a snail-eating bug from the Philippines. Philippine Entomologist 16: 53–67.
Janson EM, Stireman JO, Singer MS, Abbot P . (2008). Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62: 997–1012.
Joy JB . (2013). Symbiosis catalyses niche expansion and diversification. P Roy Soc B-Biol Sci 280: 7.
Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Kimura N et al. (2010). Primary gut symbiont and secondary, Sodalis-allied symbiont of the scutellerid stinkbug Cantao ocellatus. Appl Environ Microbiol 76: 3486–3494.
Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M, Meng XY et al. (2014). Symbiont-supplemented maternal investment underpinning host's ecological adaptation. Curr Biol 24: 2465–2470.
Kaltenpoth M, Winter SA, Kleinhammer A . (2009). Localization and transmission route of Coriobacterium glomerans, the endosymbiont of pyrrhocorid bugs. FEMS Microbiol Ecol 69: 373–383.
Kaltenpoth M, Roeser-Mueller K, Koehler S, Peterson A, Nechitaylo TY, Stubblefield JW et al. (2014). Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proc Natl Acad Sci USA 111: 6359–6364.
Kaltenpoth M, Steiger S . (2014). Unearthing carrion beetles' microbiome: characterization of bacterial and fungal hindgut communities across the Silphidae. Mol Ecol 23: 1251–1267.
Kikuchi Y, Hosokawa T, Fukatsu T . (2007). Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73: 4308–4316.
Kikuchi Y, Hosokawa T, Nikoh N, Meng X-Y, Kamagata Y, Fukatsu T . (2009). Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 7: 2.
Kikuchi Y, Hosokawa T, Fukatsu T . (2011a). An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J 5: 446–460.
Kikuchi Y, Hosokawa T, Fukatsu T . (2011b). Specific developmental window for establishment of an insect-microbe gut symbiosis. Appl Environ Microbiol 77: 4075–4081.
Koch H, Schmid-Hempel P . (2011). Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62: 121–133.
Kodrík D, Vinokurov K, Tomčala A, Socha R . (2012). The effect of adipokinetic hormone on midgut characteristics in Pyrrhocoris apterus L. (Heteroptera). J Insect Physiol 58: 194–204.
Koga R, Tsuchida T, Fukatsu T . (2003). Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. P Roy Soc B-Biol Sci 270: 2543–2550.
Koga R, Bennett GM, Cryan JR, Moran NA . (2013). Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ Microbiol 15: 2073–2081.
Koga R, Moran NA . (2014). Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J 8: 1237–1246.
Kohno K, Ngan BT, Fujiwara M . (2004). Predation of Dysdercus cingulatus (Heteroptera: Pyrrhocoridae) by the specialist predator Antilochus coqueberti (Heteroptera: Pyrrhocoridae). Appl Entomol Zool 39: 661–667.
Kristenová M, Exnerová A, Štys P . (2011). Seed preferences of Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae): are there specialized trophic populations? Eur J Entomol 108: 581–586.
Kuechler SM, Renz P, Dettner K, Kehl S . (2012). Diversity of symbiotic organs and bacterial endosymbionts of lygaeoid bugs of the families Blissidae and Lygaeidae (Hemiptera: Heteroptera: Lygaeoidea). Appl Environ Microbiol 78: 2648–2659.
Lee C, Kim J, Shin SG, Hwang S . (2006). Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol 123: 273–280.
Lee C, Lee S, Shin SG, Hwang S . (2008). Real-time PCR determination of rRNA gene copy number: Absolute and relative quantification assays with Escherichia coli. Appl Microbiol Biot 78: 371–376.
Legendre P, Desdevises Y, Bazin E . (2002). A statistical test for host-parasite coevolution. Syst Biol 51: 217–234.
Li HM, Deng RQ, Wang JW, Chen ZY, Jia FL, Wang XZ . (2005). A preliminary phylogeny of the Pentatomomorpha (Hemiptera: Heteroptera) based on nuclear 18S rDNA and mitochondrial DNA sequences. Mol Phylogenet Evol 37: 313–326.
Li M, Tian Y, Zhao Y, Bu W . (2012). Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes. PLoS One 7: e32152.
Lundgren JG, Lehman RM . (2010). Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS One 5: e10831.
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS . (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66: 506–577.
Matsuura Y, Kikuchi Y, Hosokawa T, Koga R, Meng XY, Kamagata Y et al. (2012). Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME J 6: 397–409.
Meehan CJ, Beiko RG . (2014). A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 6: 703–713.
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science 346: 763–767.
Miyamoto S . (1961). Comparative morphology of alimentary organs of Heteroptera, with the phylogenetic consideration. Sieboldia Fukuoka 2: 197–259.
Moran NA, Tran P, Gerardo NM . (2005). Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71: 8802–8810.
Moran NA . (2007). Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA 104: 8627–8633.
Moran NA, McCutcheon JP, Nakabachi A . (2008). Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42: 165–190.
Muller HJ . (1956). Experimentelle studien an der symbiose von Coptosoma scutellatum Geoffr. (Hem. Heteropt.). Z Morphol Oekol Tiere 44: 459–482.
Page RDM. (1995). TreeMap for Windows version 3. Available from https://sites.google.com/site/cophylogeny/treemap.
Pinto-Tomas AA, Anderson MA, Suen G, Stevenson DM, Chu FS, Cleland WW et al. (2009). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326: 1120–1123.
Podschun R, Ullmann U . (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11: 589–603.
Prado SS, Rubinoff D, Almeida RPP . (2006). Vertical transmission of a pentatomid caeca-associated symbiont. Ann Entomol Soc Am 99: 577–585.
Prado SS, Almeida RP . (2009). Phylogenetic placement of pentatomid stink bug gut symbionts. Curr Microbiol 58: 64–69.
Price MN, Dehal PS, Arkin AP . (2010). FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5: e9490.
Pruesse E, Peplies J, Glockner FO . (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829.
Rastogi SC . (1964). Studies on the digestive system of Odontopus nigricornis Stal (Hemiptera, Pyrrhocoridae). Tijdschr Ent 107: 265–275.
Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M . (2013). Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ Microbiol 15: 1956–1968.
Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M . (2014). Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. P Roy So B-Biol Sci 281: 20141838.
Salem H, Florez L, Gerardo N, Kaltenpoth M . (2015). An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. P Roy So B-Biol Sci 282: 20142957.
Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE . (2014). Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol 23: 1268–1283.
Saxena KN, Bhatnagar P . (1958). Physiological adaptations of dusky cotton bug, Oxycarenus hyalinipennis (Costa) (Heteroptera; Lygaeidae) to its host plant, cotton. Pt. I. Digestive enzymes in relation to tissue preference. Proc Natl Inst Sci India B Biol Sci 24: 245–257.
Schaefer CW . (1993). The Pentatomomorpha (Hemiptera, Heteroptera) - an annotated outline of its systematic history. Eur J Entomol 90: 105–122.
Schauer C, Thompson CL, Brune A . (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl Environ Microbiol 78: 2758–2767.
Schneider DL, Sheehan ET, Vavich MG, Kemmerer AR . (1968). Effect of Sterculia foetida oil on weanling rat growth and survival. J Agric Food Chem 16: 1022.
Schorr H . (1957). Zur verhaltensbiologie und symbiose von Brachypelta Aterrima först. (Cydnidae, Heteroptera). Zoomorphology 45: 561–602.
Schuh RT, Slater JA . (1995) True Bugs of the World (Hemiptera: Heteroptera): Classification and Natural History. Cornell University Press: : Ithaca, New York.
Scudder SH . (1890). The fossil insects of North America, with notes on some European species. 2. The tertiary insects. Rep US Geol Survey Territories 13: 1–734.
Silva CP, Terra WR . (1994). Digestive and absorptive sites along the midgut of the cotton seed sucker bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Insect Biochem Mol Biol 24: 493–505.
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P . (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87: 651–701.
Singh R, Singh PP . (2001). Studies of the anatomy and histology of the alimentary canal of Antilochus coqueberti (Heteroptera: Pyrrhocoridae) under fed and starved conditions. Himalayan J Environ Zool 15: 87–100.
Socha R . (1993). Pyrrhocoris apterus (Heteroptera) - an experimental model species: a review. Eur J Entomol 90: 241–286.
Stackebrandt E, Zeytun A, Lapidus A, Nolan M, Lucas S, Hammon N et al. (2013). Complete genome sequence of Coriobacterium glomerans type strain (PW2(T)) from the midgut of Pyrrhocoris apterus L. (red soldier bug). Stand Genomic Sci 8: 15–25.
Statz G, Wagner E . (1950). Geocorisae (Landwanzen) aus den oberoligoca'nen Ablagerungen von Rott. Palaeontographica 98A: 97–136.
Sudakaran S, Salem H, Kost C, Kaltenpoth M . (2012). Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol 21: 6134–6151.
Sun Y, Wolcott RD, Dowd SE . (2011). Tag-encoded FLX amplicon pyrosequencing for the elucidation of microbial and functional gene diversity in any environment. Methods Mol Biol 733: 129–141.
Tada A, Kikuchi Y, Hosokawa T, Musolin DL, Fujisaki K, Fukatsu T . (2011). Obligate association with gut bacterial symbiont in Japanese populations of the southern green stinkbug Nezara viridula (Heteroptera: Pentatomidae). Appl Entomol Zool 46: 483–488.
Takiya DM, Tran PL, Dietrich CH, Moran NA . (2006). Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Mol Ecol 15: 4175–4191.
Toju H, Tanabe AS, Notsu Y, Sota T, Fukatsu T . (2013). Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME J 7: 1378–1390.
Urban JM, Cryan JR . (2012). Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evol Biol 12: 87.
van Borm S, Buschinger A, Boomsma JJ, Billen J . (2002). Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. P Roy Soc B-Biol Sci 269: 2023–2027.
Von Dohlen CD, Moran NA . (2000). Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation. Biol J Linnean Soc 71: 689–717.
Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R et al. (2009). Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA 106: 3853–3858.
Wang Q, Garrity GM, Tiedje JM, Cole JR . (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267.
Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT et al. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560–565.
Weisburg W, Barns S, Pelletier D, Lane D . (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–1400.
Wetschnig W, Depisch B . (1999). Pollination biology of Welwitschia mirabilis HOOK. f. (Welwitschiaceae, Gnetopsida). Phyton-Annales Rei Botanicae 39: 167–183.
Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T . (2007). The genetic basis of a plant-insect coevolutionary key innovation. Proc Natl Acad Sci USA 104: 20427–20431.
Whitsitt ML . (1933). Vitamin B(B1) and G(B2) content of cotton-seed products. Indust Engineer Chem 25: 1169–1171.
Xie Q, Bu WJ, Zheng LY . (2005). The Bayesian phylogenetic analysis of the 18S rRNA sequences from the main lineages of Trichophora (Insecta: Heteroptera: Pentatomomorpha). Mol Phylogenet Evol 34: 448–451.
Acknowledgements
We thank Benjamin Weiss for assistance in rearing bugs, Annett Endler and Thomas Henry for providing Pyrrhocoridae specimens, and two anonymous referees for insightful comments on the manuscript. We thank Dr Jürgen Deckert from the Natural History Museum in Berlin for his help in taxonomical identification of the specimens and for providing samples, and Domenica Schnabelrauch and the Department of Entomology (Max Planck Institute for Chemical Ecology) for capillary sequencing. We gratefully acknowledge funding from the Max Planck Society (to SS, FR, CK and MK) and the Volkswagen Foundation (to CK).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies this paper on The ISME Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Sudakaran, S., Retz, F., Kikuchi, Y. et al. Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME J 9, 2587–2604 (2015). https://doi.org/10.1038/ismej.2015.75
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2015.75
This article is cited by
-
The gut microbiota of insects: a potential source of bacteria and metabolites
International Journal of Tropical Insect Science (2024)
-
Symbioses shape feeding niches and diversification across insects
Nature Ecology & Evolution (2023)
-
Feeding experience on hairy vetch induces a loss of host-specific adaptation to maize and changes in the gut microbiota communities of the fall armyworm
Journal of Pest Science (2023)
-
Evaluation of Sample Preservation Approaches for Better Insect Microbiome Research According to Next-Generation and Third-Generation Sequencing
Microbial Ecology (2021)
-
Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat
The ISME Journal (2019)