Abstract
Despite an increased understanding of functions in sponge microbiomes, the interactions among the symbionts and between symbionts and host are not well characterized. Here we reconstructed the metabolic interactions within the sponge Cymbastela concentrica microbiome in the context of functional features of symbiotic diatoms and the host. Three genome bins (CcPhy, CcNi and CcThau) were recovered from metagenomic data of C. concentrica, belonging to the proteobacterial family Phyllobacteriaceae, the Nitrospira genus and the thaumarchaeal order Nitrosopumilales. Gene expression was estimated by mapping C. concentrica metatranscriptomic reads. Our analyses indicated that CcPhy is heterotrophic, while CcNi and CcThau are chemolithoautotrophs. CcPhy expressed many transporters for the acquisition of dissolved organic compounds, likely available through the sponge’s filtration activity and symbiotic carbon fixation. Coupled nitrification by CcThau and CcNi was reconstructed, supported by the observed close proximity of the cells in fluorescence in situ hybridization. CcPhy facultative anaerobic respiration and assimilation by diatoms may consume the resulting nitrate. Transcriptional analysis of diatom and sponge functions indicated that these organisms are likely sources of organic compounds, for example, creatine/creatinine and dissolved organic carbon, for other members of the symbiosis. Our results suggest that organic nitrogen compounds, for example, creatine, creatinine, urea and cyanate, fuel the nitrogen cycle within the sponge. This study provides an unprecedented view of the metabolic interactions within sponge–microbe symbiosis, bridging the gap between cell- and community-level knowledge.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Alexander H, Jenkins BD, Rynearson TA, Dyhrman ST (2015). Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc Natl Acad Sci USA 112: E2182–E2190.
Allen AE, Dupont CL, Obornik M, Horak A, Nunes-Nesi A, McCrow JP et al (2011). Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473: 203–207.
Allen CM, Jones ME (1964). Decomposition of carbamylphosphate in aqueous solutions. Biochemistry 3: 1238–1247.
Alonso-Saez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL et al (2012). Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci USA 109: 17989–17994.
Anderson PM, Sung YC, Fuchs JA (1990). The cyanase operon and cyanate metabolism. FEMS Microbiol Rev 7: 247–252.
Aoshima M, Ishii M, Igarashi Y (2004a). A novel enzyme, citryl-CoA synthetase, catalysing the first step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol Microbiol 52: 751–761.
Aoshima M, Ishii M, Igarashi Y (2004b). A novel enzyme, citryl-CoA lyase, catalysing the second step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6. Mol Microbiol 52: 763–770.
Arp DJ, Chain PS, Klotz MG (2007). The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 61: 503–528.
Bartossek R, Spang A, Weidler G, Lanzen A, Schleper C (2012). Metagenomic analysis of ammonia-oxidizing archaea affiliated with the soil group. Front Microbiol 3: 208.
Bayer B, Vojvoda J, Offre P, Alves RJ, Elisabeth NH, Garcia JA et al (2016). Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J 10: 1051–1063.
Bayer K, Moitinho-Silva L, Brummer F, Cannistraci CV, Ravasi T, Hentschel U (2014). GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol 90: 832–843.
Bazan JF, Weaver LH, Roderick SL, Huber R, Matthews BW (1994). Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold. Proc Natl Acad Sci USA 91: 2473–2477.
Bell JJ (2008). The functional roles of marine sponges. Estuar Coastal Shelf Sci 79: 341–353.
Berg GM, Jorgensen NOG (2006). Purine and pyrimidine metabolism by estuarine bacteria. Aquat Microb Ecol 42: 215–226.
Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007). A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318: 1782–1786.
Berg IA (2011). Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77: 1925–1936.
Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F et al (2003). Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Biol 10: 681–687.
Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (2011). Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS ONE 6: e16626.
Cary SC, Giovannoni SJ (1993). Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90: 5695–5699.
Chen J-W, Dodia C, Feinstein SI, Jain MK, Fisher AB (2000). 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 275: 28421–28427.
Cho B, Park M, Shim J, Azam F (1996). Significance of bacteria in urea dynamics in coastal surface waters. Mar Ecol Prog Ser 142: 19–26.
Cho I, Blaser MJ (2012). The human microbiome: at the interface of health and disease. Nat Rev Genet 13: 260–270.
Coyte KZ, Schluter J, Foster KR (2015). The ecology of the microbiome: networks, competition, and stability. Science 350: 663–666.
Crandall JB, Teece MA (2012). Urea is a dynamic pool of bioavailable nitrogen in coral reefs. Coral Reefs 31: 207–214.
de Goeij JM, van den Berg H, van Oostveen MM, Epping EHG, van Duyl FC (2008). Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser 357: 139–151.
de Goeij JM, van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF et al (2013). Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342: 108–110.
Dethlefsen L, McFall-Ngai M, Relman DA (2007). An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449: 811–818.
Díez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T . (2016).Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol; e-pub ahead of print 30 December 2016; doi:10.1111/mec.14003.
Douglas AE, Werren JH (2016). Holes in the hologenome: why host-microbe symbioses are not holobionts. MBio 7: e02099.
Ellington WR (2000). A dimeric creatine kinase from a sponge: implications in terms of phosphagen kinase evolution. Comp Biochem Physiol B Biochem Mol Biol 126: 1–7.
Ellington WR, Suzuki T (2007). Early evolution of the creatine kinase gene family and the capacity for creatine biosynthesis and membrane transport. Subcell Biochem 46: 17–26.
Estelmann S, Hugler M, Eisenreich W, Werner K, Berg IA, Ramos-Vera WH et al (2011). Labeling and enzyme studies of the central carbon metabolism in Metallosphaera sedula. J Bacteriol 193: 1191–1200.
Esteves AI, Amer N, Nguyen M, Thomas T (2016). Sample processing impacts the viability and cultivability of the sponge microbiome. Front Microbiol 7: 499.
Evans MC, Buchanan BB, Arnon DI (1966). A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55: 928–934.
Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS et al (2012). Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci USA 109: E1878–E1887.
Freeman CJ, Thacker RW, Baker DM, Fogel ML (2013). Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J 7: 1116–1125.
Furdui C, Ragsdale SW (2000). The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J Biol Chem 275: 28494–28499.
Gabel C, Maier RJ (1993). Oxygen-dependent transcriptional regulation of cytochrome aa3 in Bradyrhizobium japonicum. J Bacteriol 175: 128–132.
Garcia-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB (1994). The superfamily of heme-copper respiratory oxidases. J Bacteriol 176: 5587–5600.
Gillan FT, Stoilov IL, Thompson JE, Hogg RW, Wilkinson CR, Djerassi C (1988). Fatty acids as biological markers for bacterial symbionts in sponges. Lipids 23: 1139–1145.
Gorres KL, Raines RT (2010). Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45: 106–124.
Guilloton M, Karst F (1985). A spectrophotometric determination of cyanate using reaction with 2-aminobenzoic acid. Anal Biochem 149: 291–295.
Hadas E, Shpigel M, Ilan M (2009). Particulate organic matter as a food source for a coral reef sponge. J Exp Biol 212: 3643–3650.
Hagerhall C (1997). Succinate: quinone oxidoreductases. Variations on a conserved theme. Biochim Biophys Acta 1320: 107–141.
Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM et al (2006). Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4: e95.
Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT et al (2009). Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11: 2228–2243.
Hosie AH, Allaway D, Galloway CS, Dunsby HA, Poole PS (2002). Rhizobium leguminosarum has a second general amino acid permease with unusually broad substrate specificity and high similarity to branched-chain amino acid transporters (Bra/LIV) of the ABC family. J Bacteriol 184: 4071–4080.
Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011). Integrative analysis of environmental sequences using MEGAN4. Genome Res 21: 1552–1560.
Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW (2014). GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ 2: e603.
Javelle A, Thomas G, Marini AM, Kramer R, Merrick M (2005). In vivo functional characterization of the Escherichia coli ammonium channel AmtB: evidence for metabolic coupling of AmtB to glutamine synthetase. Biochem J 390: 215–222.
Johnson WV, Anderson PM (1987). Bicarbonate is a recycling substrate for cyanase. J Biol Chem 262: 9021–9025.
Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K et al (2013). Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J 7: 2287–2300.
Kikuchi Y, Hosokawa T, Fukatsu T (2007). Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73: 4308–4316.
Kim JM, Shimizu S, Yamada H (1986). Sarcosine oxidase involved in creatinine degradation in Alcaligenes denitrificans subsp dentrificans J9 and Arthrobacter spp J5 and J11. Agric Biol Chem 50: 2811–2816.
Koch H, Lucker S, Albertsen M, Kitzinger K, Herbold C, Spieck E et al (2015). Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA 112: 11371–11376.
Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543–546.
Konneke M, Schubert DM, Brown PC, Hugler M, Standfest S, Schwander T et al (2014). Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA 111: 8239–8244.
Koopmans M, van Rijswijk P, Boschker HT, Marco H, Martens D, Wijffels RH (2015). Seasonal variation of Fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified. Mar Biotechnol (NY) 17: 43–54.
Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY (2016). Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J 10: 1836–1845.
Kraft B, Strous M, Tegetmeyer HE (2011). Microbial nitrate respiration—genes, enzymes and environmental distribution. J Biotechnol 155: 104–117.
Langmead B, Trapnell C, Pop M, Salzberg SL (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
Lavy A, Keren R, Yahel G, Ilan M (2016). Intermittent hypoxia and prolonged suboxia measured in situ in a marine sponge. Front Mar Sci 3: 263.
Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C et al (2016). Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 92.
Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010). RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26: 493–500.
Li B, Dewey CN (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 1–16.
Liu F, Li J, Feng G, Li Z (2016). New genomic insights into ‘Entotheonella’ symbionts in Theonella swinhoei: mixotrophy, anaerobic adaptation, resilience, and interaction. Front Microbiol 7: 1333.
Liu M, Fan L, Zhong L, Kjelleberg S, Thomas T (2012). Metaproteogenomic analysis of a community of sponge symbionts. ISME J 6: 1515–1525.
Liu MY, Kjelleberg S, Thomas T (2011). Functional genomic analysis of an uncultured delta-proteobacterium in the sponge Cymbastela concentrica. ISME J 5: 427–435.
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Section 15.1. Diffusion of Small Molecules Across Phospholipid Bilayers. Molecular Cell Biology 4th edn Freeman & Co.: New York, NY, USA, p1084.
Lu W, Du J, Schwarzer NJ, Wacker T, Andrade SL, Einsle O (2013). The formate/nitrite transporter family of anion channels. Biol Chem 394: 715–727.
Lucker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B et al (2010). A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA 107: 13479–13484.
Lucker S, Nowka B, Rattei T, Spieck E, Daims H (2013). The genome of nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front Microbiol 4: 27.
Marier JR, Rose D (1964). Determination of cyanate, and a study of its accumulation in aqueous solutions of urea. Anal Biochem 7: 304–314.
Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Pillay M et al (2014). IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42: D560–D567.
Marta R, Rafel C, Josep-Maria G (1999). Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser 176: 179–190.
Martens EC, Heungens K, Goodrich-Blair H (2003). Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. J Bacteriol 185: 3147–3154.
Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U (2014). Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ Microbiol 16: 3683–3698.
Morris RL, Schmidt TM (2013). Shallow breathing: bacterial life at low O(2). Nat Rev Microbiol 11: 205–212.
Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M et al (2015). Cyanate as an energy source for nitrifiers. Nature 524: 105–108.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25: 1043–1055.
Peix A, Rivas R, Trujillo ME, Vancanneyt M, Velazquez E, Willems A (2005). Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int J Syst Evol Microbiol 55: 1163–1166.
Preisig O, Zufferey R, Thony-Meyer L, Appleby CA, Hennecke H (1996). A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178: 1532–1538.
Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH et al (2014). Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA 111: 12504–12509.
Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T et al (2012). Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ Microbiol 14: 1308–1324.
Ribes M, Jimenez E, Yahel G, Lopez-Sendino P, Diez B, Massana R et al (2012). Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol 14: 1224–1239.
Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C et al (2016). Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics 17: 158.
Schläppy ML, Weber M, Mendola D, Hoffmann F, de Beer D (2010). Heterogeneous oxygenation resulting from active and passive flow in two Mediterranean sponges, Dysida avara and Chondrosia reniformis. Limnol Oceanogr 55: 1289–1300.
Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U (2008). Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol 74: 7694–7708.
Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N et al (2012). Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6: 564–576.
Shaibe E, Metzer E, Halpern YS (1985). Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol 163: 933–937.
Shimizu S, Kim J, Shinmen Y, Yamada H (1986). Evaluation of two alternative metabolic pathways for creatinine degradation in microorganisms. Arch Microbiol 145: 322–328.
Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C et al (2011). Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5: 61–70.
Solomon C, Collier J, Berg G, Glibert P (2010). Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review. Aquatic Microbial Ecol 59: 67–88.
Sona S, Suzuki T, Ellington WR (2004). Cloning and expression of mitochondrial and protoflagellar creatine kinases from a marine sponge: implications for the origin of intracellular energy transport systems. Biochem Biophys Res Commun 317: 1207–1214.
Spang A, Poehlein A, Offre P, Zumbragel S, Haider S, Rychlik N et al (2012). The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol 14: 3122–3145.
Spieck E, Ehrich S, Aamand J, Bock E (1998). Isolation and immunocytochemical location of the nitrite-oxidizing system in nitrospira moscoviensis. Arch Microbiol 169: 225–230.
Spieck E, Bock E (2005). The lithoautotrophic nitrite-oxidizing bacteria In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, Boone DR, Vos PD et al (eds). Bergey’s Manual of Systematic Bacteriology. Springer Science+Business Media: New York, USA, pp 149–153.
Starkenburg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW et al (2006). Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Appl Environ Microbiol 72: 2050–2063.
Stieglmeier M, Alves RJE, Schleper C (2014a) The Phylum Thaumarchaeota In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Other Major Lineages of Bacteria and the Archaea 4th edn. Springer-Verlag: Berlin, Heidelberg, Germany.
Stieglmeier M, Klingl A, Alves RJ, Rittmann SK, Melcher M, Leisch N et al (2014b). Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 64: 2738–2752.
Su J, Jin L, Jiang Q, Sun W, Zhang F, Li Z (2013). Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria. PLoS ONE 8: e64848.
Swem LR, Elsen S, Bird TH, Swem DL, Koch HG, Myllykallio H et al (2001). The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. J Mol Biol 309: 121–138.
Tate Jr DJ, Miceli MV, Newsome DA (1995). Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 36: 1271–1279.
Taylor MW, Schupp PJ, Dahllof I, Kjelleberg S, Steinberg PD (2004). Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6: 121–130.
Taylor MW (2005) The ecology of marine sponge-associated bacteria Ph.D. thesisThe University of New South Wales: Sydney, Australia.
Taylor MW, Radax R, Steger D, Wagner M (2007). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71: 295–347.
Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A et al (2010). Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4: 1557–1567.
Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C et al (2016). Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7: 11870.
van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B et al (2015). Complete nitrification by a single microorganism. Nature 528: 555–559.
Wagner GP, Kin K, Lynch VJ (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131: 281–285.
Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ et al (2010). Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 107: 8818–8823.
Webster NS, Thomas T (2016). The sponge hologenome. MBio 7: e00135-16.
Wetz MS, Wheeler PA (2007). Release of dissolved organic matter by coastal diatoms. Limnol Oceanogr 52: 798–807.
White D (2007), The Physiology and Biochemistry of Prokaryotes. Oxford University Press: New York, NY, USA.
Willems A (2014) The family Phyllobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Alphaproteobacteria and Betaproteobacteria 4th edn. Springer: Berlin, Germany, pp 355–418.
Wilson MC, Mori T, Ruckert C, Uria AR, Helf MJ, Takada K et al (2014). An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506: 58–62.
Wulff J (2012). Ecological interactions and the distribution, abundance, and diversity of sponges. Adv Mar Biol 61: 273–344.
Wyss M, Kaddurah-Daouk R (2000). Creatine and creatinine metabolism. Physiol Rev 80: 1107–1213.
Yahel G, Sharp JH, Marie D, Hase C, Genin A (2003). In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol Oceanogr 48: 141–149.
Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FA, Drew JC et al (2014). Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 9: e101648.
Zheng H, Wisedchaisri G, Gonen T (2013). Crystal structure of a nitrate/nitrite exchanger. Nature 497: 647–651.
Acknowledgements
We acknowledge the financial support of the Betty and Gordon Moore Foundation and the Australian Research Council. We thank Dr Tamsin Peters and Jadranka Nappi for sample collection. We also thank Dr Ute Hentschel for hosting GB at the GEOMAR Helmholtz Centre for Ocean Research. MTJ was supported by grants of the German Excellence Initiative to the Graduate School of Life Sciences, University of Wuerzburg.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies this paper on The ISME Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Moitinho-Silva, L., Díez-Vives, C., Batani, G. et al. Integrated metabolism in sponge–microbe symbiosis revealed by genome-centered metatranscriptomics. ISME J 11, 1651–1666 (2017). https://doi.org/10.1038/ismej.2017.25
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2017.25
This article is cited by
-
Adaptive strategies of Caribbean sponge holobionts beyond the mesophotic zone
Microbiome (2025)
-
Diversity and composition of sponge-associated microbiomes from Korean sponges revealed by full-length 16S rRNA analysis
Scientific Reports (2025)
-
Defining Organismality
Biological Theory (2025)
-
From Sea to Freshwater: Shared and Unique Microbial Traits in Sponge Associated Prokaryotic Communities
Current Microbiology (2025)
-
Evidence of habitat specificity in sponge microbiomes from Antarctica
Environmental Microbiome (2024)