Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Fischbach, M. A. & Walsh, C. T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009).
Saleem, M. et al. Antimicrobial natural products: an update on future antibiotic drug candidates. Nat. Prod. Rep. 27, 238–254 (2010).
Smith, R. A., Peterson, W. H. & McCoy, E. Oligomycin, a new antifungal antibiotic. Antibiot. Chemother. 4, 962–970 (1954).
Li, Y. C. et al. Mitochondria-targeting drug oligomycin blocked P-glycoprotein activity and triggered apoptosis in doxorubicin-resistant HepG2 cells. Chemotherapy 50, 55–62 (2004).
Debono, M. et al. Synthesis and antimicrobial evaluation of 20-deoxo-20-(3,5-dimethylpiperidin-1-yl)desmycosin (tilmicosin, EL-870) and related cyclic amino derivatives. J. Antibiot. 42, 1253–1267 (1989).
Park, J. W. et al. Exploiting the natural metabolic diversity of Streptomyces venezuelae to generate unusual reduced macrolides. Chem. Commun. 44, 5782–5784 (2008).
Wagenaar, M. M., Williamson, R. T., Ho, D. M. & Carter, G. T. Structure and absolute stereochemistry of 21-hydroxyoligomycin A. J. Nat. Prod. 70, 367–371 (2007).
Ding, J., Ren, N., Chen, L. & Ding, L. On-line coupling of solid-phase extraction to liquid chromatography-tandem mass spectrometry for the determination of macrolide antibiotics in environmental water. Anal. Chim. Acta. 634, 215–221 (2009).
Lysenkova, L. N., Turchin, K. F., Danilenko, V. N., Korolev, A. M. & Preobrazhenskaya, M. N. The first examples of chemical modification of oligomycin A. J. Antibiot. 63, 17–22 (2010).
NCCLS (National Committee for Clinical Laboratory Standards). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard M7-A5 (NCCLS, Wayne, PA, 2000).
Siméone, R., Constant, P., Guilhot, C., Daffé, M. & Chalut, C. Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis. J. Bacteriol. 189, 4597–4602 (2007).
Halo, L. M. et al. Authentic heterologous expression of the tenellin iterative polyketide synthase nonribosomal peptide synthetase requires coexpression with an enoyl reductase. Chembiochem. 9, 585–594 (2008).
Bumpus, S. B., Magarvey, N. A., Kelleher, N. L., Walsh, C. T. & Calderone, C. T. Polyunsaturated fatty-acid-like trans-enoyl reductases utilized in polyketide biosynthesis. J. Am. Chem. Soc. 130, 11614–11616 (2008).
Acknowledgements
This work was supported by the National Research Foundation of Korea grants funded by the Korea government (MEST; R0A-2008-000-20030-0, 2009-0073043, and 2010-0001487), and Technology Development Program (20100623) for Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to the late Dr C Richard Hutchinson for his exceptional contributions to natural product biosynthesis, engineering and drug discovery.
Supplementary Information accompanies the paper on The Journal of Antibiotics website
Supplementary information
Rights and permissions
About this article
Cite this article
Park, J., Park, S., Han, A. et al. Generation of reduced macrolide analogs by regio-specific biotransformation. J Antibiot 64, 155–157 (2011). https://doi.org/10.1038/ja.2010.143
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2010.143