Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Birosova, L. & Mikulasova, M. Development of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium. J. Med. Microbiol. 58, 436–441 (2009).
Rybak, J. M. & Grath, M. J. B. Combination antimicrobial therapy for bacterial infections, Guidelines for the Clinician. Drugs 52, 390–402 (1996).
Rishi, P., Mavi, S. K., Bharrhan, S., Shukla, G. & Tewari, R. Protective efficacy of probiotics alone or in conjunction with a prebiotic in Salmonella–induced liver damage. FEMS. Microbiol. Ecol. 69, 222–230 (2009).
Bergonzelli, G. E., Blum, S., Brussow, H. & Theulaz, C. I. Probiotics as a treatment strategy for gastrointestinal diseases. Digestion 72, 57–68 (2005).
Zou, J., Dong, J. & Yu, X. Meta-analysis: lactobacillus containing quadruple therapy versus standard triple first-line therapy for Helicobacter pylori eradication. Helicobacter 14, 97–107 (2009).
Rishi, P., Preet, S. & Kaur, P. Effect of L. plantarum cell-free extract and co-trimoxazole against Salmonella Typhimurium: a possible adjunct therapy. Ann. Clin. Microbiol Antimicrob. 10, 9 (2011).
Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966).
Tagg, J. R. & McGiven, A. R. Assay system for bacteriocins. Appl. Microbiol. 21, 943–948 (1971).
Ogunbanwo, S. T., Sanni, A. I. & Onilude, A. A. Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevisOG1. Afr. J. Biotechnol. 2, 219–227 (2003).
Clinical and Laboratory Standards Institute. M100-S20. Performance Standards for Antimicrobial Susceptibility Testing: 20th Informational Supplement, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2010.
White, R. L., Burgess, D. S., Manduru, M. & Bosso, J. A. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob. Agents. Chemother. 40, 1914–1918 (1996).
Mandal, S., Mandal, M. D. & Pal, N. K. Synergism of ciprofloxacin and trimethoprim against salmonella enterica serovar typhi isolates showing reduced susceptibility to ciprofloxacin. Chemotherapy 50, 152–154 (2004).
Aarestrup, F. M., Wiuff, C., Molbak, K. & Threlfall, E. J. Is it time to change fluoroquinolone breakpoints for Salmonella spp.? Antimicrob. Agents. Chemother. 47, 827–829 (2003).
Threlfall, E. J., Skinner, J. A. & Ward, L. R. Detection of decreased in vitro susceptibility to ciprofloxacin in Salmonella enterica serotypes typhi and paratyphi A. J. Antimicrob. Chemother. 48, 740–741 (2001).
Gutman, L., Al-obeid, S., Billot-klein, D., Guerrier, M. L. & Collatz, E. Synergy and resistance to synergy between β-lactam antibiotics and glycopeptide resistant strains of Enterococcus faecium. Antimicrob. Agents. Chemother. 38, 824–829 (1994).
Botes, M., Loos, B., van Reenen, C. A. & Dicks, L. M. Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments. Arch. Microbiol. 190, 573–584 (2008).
Asahara, T., Nomoto, K., Shimizu, K., Watanuki, M. & Tanaka, R. Increased resistance of mice to Salmonelaa enterica serovar Typhimurium infection by symbiotic administration of Bifidobacteria and transgalactosylated oligosaccharides. J. Appl. Microb. 91, 985–996 (2001).
Gonza'lez, B. et al. Bactericidal mode of action of plantaricin C. Appl. Environ. Microbiol. 62, 2701–2709 (1996).
Campos, M. A., Morey, P. & Bengoechea, J. A. Quinolones sensitize Gram- negative bacteria to antimicrobial peptides. Antimicrob. Agents. Chemother. 50, 2361–2367 (2006).
Labro, M. T. Interference of antibacterial agents with phagocyte functions: immunomodulation or immuno-fairy tales. Clin. Microbiol. Rev. 13, 615–650 (2000).
Hatcher, G. E. & Lambrecht, R. S. Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. J. Dairy. Sci. 76, 2485–2492 (1993).
Vincenti, J. E. The influence of cell-free Lactobacillus rhamnosus GG supernatant on the phagocytic activity of macrophages. Bio. Horizons 3, 105–112 (2010).
Feld, L. et al. Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment. J. Antimicrob. Chemother. 61, 845–852 (2008).
Snydman, D. R. The safety of probiotics. Clin Infect Dis. 46 (Suppl 2), S104–S111 (2008).
Acknowledgements
The authors wish to acknowledge the Council of Scientific and Industrial Research, New Delhi, for providing financial assistance to carry out this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Singh, A., Preet, S. & Rishi, P. Augmentation of antimicrobial activity of conventional antibiotics by cell-free extract of L. plantarum. J Antibiot 64, 795–798 (2011). https://doi.org/10.1038/ja.2011.92
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2011.92
Keywords
This article is cited by
-
Efficacy of Cryptdin-2 as an Adjunct to Antibiotics from Various Generations Against Salmonella
Indian Journal of Microbiology (2014)