Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Rabbinge, R. In. The Role of Asia in World of Food Security (eds, Bindraban P. S., Van K. H., Kuyvenhoven A., Rabbinge R., Uithol P. W. J., 153–157 AB-DLO & PE, Wageningen: The Netherlands, (1999).
Paroda, R. S. & Kumar, P. Food production and demand in South Asia. Agri. Econ. Res. Rev. 13, 1–24 (2000).
Swaminathan, M. S. Science and Integrated Rural Development, Concept Publishing: New Delhi, India, (1982).
Siddiqui, Z. A. & Mahmood, I. Effects of Heterodera cajani, Meloidogyne incognita and Fusarium udum on the wilt disease complex of pigeon pea. Ind. J. Nematol. 26, 102–104 (1996).
Siddiqui, Z. A. & Mahmood, I. Effects of inoculations of Heterodera cajani, Meloidogyne incognita and Fusarium udum and Bradyrhizobium japonicum on the wilt disease complex of pigeon pea. Ind. Phytopathol. 52, 66–70 (1999a).
Cohen, Y. & Leavy, Y. Joint action of fungicides in mixtures: theory and practice. Phytoparasitica 18, 159–169 (1990).
Mukhopadhyay, A. N. Biological control of soil-borne plant pathogens by Trichoderma spp. Ind. J. Mycol. Pt. Pathol. 17, 1–9 (1987).
Pusey, P. L. Use of Bacillus subtilis and related organism as biofungicides. Petrichem. Sci. 27, 133–134 (1989).
Smith, V. L., Wilcox, W. F. & Harman, G. E. Potential for biological control of Phytopthora root and crown rot of apple by Trichoderma and Gliocladium spp. Phytopathology 80, 880–885 (1990).
Bashar, M. A. & Rai, B. Antagonistic potential of root region microflora of chickpea against Fusarium oxysporum f.sp. ciceri. Bangladesh J. Bot. 23, 13–19 (1994).
Dobbelaere, S., Vanderleyden, J. & Okon, Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Pt. Sci. 22, 107–149 (2003).
Walsh, U. F., Morrissey, J. P. & O’ Gara, F. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr. Opin. Biotechnol. 12, 289–295 (2001).
Woeng, C. A. T. F. C., Thomas-Oates, J. E., Lugtenberg, B. J. J. & Bloemberg, G. V. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol. Plant-Microbe Interact. 14, 1006–1015 (2001).
Steenhoudt, O. & Vanderleyden, J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24, 487–506 (2000).
van Loon, L. C., Bakker, P. A. H. M. & Pieterse, C. M. J. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36, 453–483 (1998).
Alippi, J. & Monaco, C. In vitro antagonism against Bacillus species and Sclerotium rolfsii, Fusarim solani. Rev. Fac. Agron. (B. Aires) 70, 91–95 (1994).
Sandra, G. A. et al. Identification and biological characterization of isolates with activity inhibitive against Macrophomina phaseolina (Tassi) Goid. Chilean J. Agri. Res 69, 526–533 (2009).
Knaak, N., Rohr, A. A. & Fiuza, L. M. In vitro effect of Bacillus thuringiensis strains and cry proteins in phytopathogenic fungi of paddy rice-field. Braz. J. Microbiol. 38, 526–530 (2007).
Rajendran, L. & Samiyappan, R. Endophytic Bacillus species confer increased resistance in cotton against damping off disease caused by Rhizoctonia solani. J. Plant Pathol. 7, 1–12 (2008).
Singh, R., Singh, B. K., Upadhyay, R. S., Bharat, R. & Youn, S. L. Biological control of Fusarium wilt disease of pigeon pea. J. Plant Pathol. 18, 279–283 (2002).
Siddiqui, Z. A. & Shakeel, U. Screening of Bacillus isolates for potential biocontrol of the wilt disease complex of pigeon pea (Cajanus cajan) under greenhouse and small-scale field conditions. J. Plant Pathol. 89, 179–183 (2007).
Weller, D. M., Raaijmakers, J. M., McSpadden, G. B. B. & Thomashow, L. S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann. Rev. Phytopathol. 40, 309–348 (2002).
Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 786–790 (2002).
Fox, G. E., Wisotzkey, J. D. & Jurtshunk, P. Jr. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42, 166–170 (1992).
Vardhan, S., Kaushik, R., Saxena, A. K. & Arora, D. K. Restriction analysis and partial sequencing of the 16S rRNA gene as index for rapid identification of Bacillus species. Anton. Van Leeuwen. 99, 283–296 (2011).
Wahyudi, A. T., Prasojo, B. J. & Mubarik, N. R. Diversity of antifungal compounds-producing Bacillus spp. Isolated from Rhizosphere of soybean plant based on ARDRA and 16S rRNA. Hayati J. Biosci. 17, 145–150 (2010).
American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater 15th edn American Public Health Association (APHA): Washington, DC, USA, (1980).
Wenzhofer, F., Holby, O. & Kohls, O. Deep penetrating benthic oxygen profiles measured in situ by oxygen optodes. Deep Sea Res. PartI Oceanogr. Res. Pap. 48, 1741–1755 (2001).
Sharma, S. K., Subba Rao, A. V. M. & Murari, K. Atlas of rice-wheat cropping system in Indo-Gangetic Plains of India. Modipuram, India. Bulletin No. 2004-I, PDCSR (ICAR), pp. 110 (2004).
Glare, T. R. & O’Callaghan, M. Bacillus thuringiensis: Biology, Ecology and Safety, John Wiley and Sons Ltd.: Chichester, UK, (2000).
Hofte, H. & Whiteley, H. R. Insecticidal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255 (1989).
Lereclus, D., Delecluse, A. & Lecadet, M. In. Diversity of Bacillus thuringiensis toxins and genes (eds Entwistle P. F., Cory J. S., Bailey M. J., Higgs S., 37–69 John Wiley & Sons Ltd.: New York City, (1993).
Yang, J. H. et al. Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J. Appl. Microbiol. 104, 91–104 (2007).
Sasaki, E., Osawa, R., Nishitani, Y. & Whiley, R. A. ARDRA and RAPD analysis of human and animal isolates of Streptococcus gallolyticus. J. Vet. Med. Sci. 66, 1467–1470 (2004).
Moreira, J. L. et al. Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal, or food origin by 16S-23S rRNA restriction analysis profiling. BMC Microbiol. 23, 5–15 (2005).
Pooeshafie, M., Vahdani, P. & Popoff, M. Genotyping Clostridium botulinum toxinotype A isolates from patients using amplified rDNA restriction analysis. J. Med. Microbiol. 54, 936 (2005).
Acknowledgements
The study was supported by the grant from Indian Council of Agricultural Research (ICAR), New Delhi, India, under the Application of Microbes in Agriculture and Applied sectors Network Project. We acknowledge ICAR for their support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on The Journal of Antibiotics website
Supplementary information
Rights and permissions
About this article
Cite this article
Vardhan, S., Yadav, A., Pandey, A. et al. Diversity analysis of biocontrol Bacillus isolated from rhizospheric soil of rice–wheat (Oryza sativa–Triticum aestivum L.) at India. J Antibiot 66, 485–490 (2013). https://doi.org/10.1038/ja.2013.10
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2013.10
Keywords
This article is cited by
-
Isolation and Characterization of Endophytic Bacteria from Piper longum
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences (2019)