Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Hwang, J., Chilton, W. & Benson, D. Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol. Control 25, 56–63 (2002).
Mavrodi, D. V., Blankenfeldt, W. & Thomashow, L. S. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation*. Annu. Rev. Phyto. 44, 417–445 (2006).
Souza, J. T. & Raaijmakers, J. M. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 43, 21–34 (2003).
Price-Whelan, A., Dietrich, L. E. P. & Newman, D. K. Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2, 71–78 (2006).
Karki, H. S. et al. Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae. PLoS ONE 7, e45376 (2012).
Chatterjee, S. et al. Phencomycin, a new antibiotic from a Streptomyces species HIL Y-9031725. J. Antibiot. (Tokyo). 48, 1353 (1995).
Bailey, D. N., Roe, D. K. & Hercules, D. M. Near-ultraviolet absorption spectrum of 5, 10-dihydrophenazine. Appl. Spectrosc. 22, 785–786 (1968).
Korth, H., Römer, A., Budzikiewicz, H. & Pulverer, G. 4, 9-Dihydroxyphenazine-1, 6-dicarboxylic acid dimethylester and the ‘missing link’ in phenazine biosynthesis. J. Gen. Microbiol. 104, 299–303 (1978).
Römer, A. 1H NMR spectra of substituted phenazines. Org. Magn. Reson. 19, 66–68 (1982).
Römer, A. 13C NMR spectra of substituted phenazines: Substituent effects on carbon-13 chemical shifts and the use of 13C-15N coupling constants for the assignment of the aromatic carbons. Org. Magn. Reson. 21, 130–136 (1983).
Pusecker, K., Laatsch, H., Helmke, E. & Weyland, H. Dihydrophencomycin methyl ester, a new phenazine derivative from a marine Streptomycete. J. Antibiot. 50, 479 (1997).
Birkofer, L. Chlororaphin, ein weiteres farbiges Stoffwechselprodukt des Bacillus pyocyaneus. Chem. Ber. 80, 212–214 (1947).
Espinel-Ingroff, A. et al. Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J. Clin. Microbiol. 43, 5243–5246 (2005).
Acknowledgements
This study was financially supported by the National Research Foundation of Korea (2010-0010396).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Han, JW., Kim, JD., Lee, JM. et al. Structural elucidation and antimicrobial activity of new phencomycin derivatives isolated from Burkholderia glumae strain 411gr-6. J Antibiot 67, 721–723 (2014). https://doi.org/10.1038/ja.2014.50
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2014.50
This article is cited by
-
Antibacterial Potential and Apoptosis Induction by Pigments from the Endophyte Burkholderia sp. WYAT7
Current Microbiology (2020)
-
New phenazine analogues from Streptomyces sp. IFM 11694 with TRAIL resistance-overcoming activities
The Journal of Antibiotics (2016)