Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Taylor, S. M. & Juliana, J. J. Artemisinin combination therapies and malaria parasite drug resistance: the game is afoot. J. Infect. Dis. 210, 335–337 (2014).
Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014).
Ward, G. E. et al. Staurosporine inhibits inversion of erythrocyte by malarial merozoites. Exp. Parasitol. 79, 480–487 (1994).
Dluzewski, A. R. & Garcia, C. R. Inhibition of invasion and intraerythrocytic development of Plasmodium falciparum by kinase inhibitors. Experientia 15, 621–623 (1996).
Gray, N. et al. ATP-site directed inhibitors of cyclin-dependent kinases. Curr. Med. Chem. 6, 859–875 (1999).
Gazarini, M. L. & Garcia, C. R. Interruption of the blood-stage cycle of the malaria parasite, Plasmodium chabaudi, by protein tyrosine kinase inhibitors. Braz. J. Med. Biol. Res. 36, 1465–1469 (2003).
Zhao, Y. et al. Molecular cloning, stage-specific expression and cellular distribution of a putative protein kinase from Plasmodium falciparum. Eur. J. Biochem. 207, 305–313 (1992).
Ross-Macdonald, P. B. et al. Isolation and expression of a gene specifying a cdc2-like protein kinase from the human malaria parasite Plasmodium falciparum. Eur. J. Biochem. 220, 693–701 (1994).
Li, J. L. et al. Pfmrk, a MO15-related protein kinase from Plasmodium falciparum. Gene cloning, sequence, stage-specific expression and chromosome localization. Eur. J. Biochem. 241, 805–813 (1996).
Syin, C. et al. The H89 cAMP-dependent protein kinase inhibitor blocks Plasmodium falciparum development in infected erythrocytes. Eur. J. Biochem. 268, 4842–4849 (2001).
Graeser, R. et al. Plasmodium falciparum protein kinase 5 and the malarial nuclear division cycles. Mol. Biochem. Parasitol. 82, 37–49 (1996).
Xiao, Z. et al. Design and synthesis of Pfmrk inhibitors as potential antimalarial agents. Bioorg. Med. Chem. Lett. 11, 2875–2878 (2001).
Ward, P. et al. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5, 79 (2004).
Doerig, C. et al. Protein kinases of malaria parasites: an update. Trends Parasitol. 24, 570–577 (2008).
Doerig, C. et al. Malaria: targeting parasite and host cell kinomes. Biochim. Biophys. Acta. 1804, 604–612 (2010).
Solyakov, L. et al. Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat. Commun. 2, 565–577 (2011).
Otoguro, K. et al. Potent antimalarial activities of polyether antibiotic, X-206. J. Antibiot. 54, 658–663 (2001).
Knight, Z. A. et al. Targeting the cancer kinome through polypharmacology. Nat. Rev. Cancer. 10, 130–137 (2010).
Wood, E. R. et al. A unique structure for epidermal growth factor receptor bound to GW572016 (lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64, 6652–6659 (2004).
Holton, S. et al. Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Structure 11, 1329–1337 (2003).
Merckx, A. et al. Structure of P. falciparum protein kinase 7 identify an activation motif and leads for inhibitor design. Structure 16, 228–238 (2008).
Vidadala, R. S. et al. Development of potent and selective Plasmodium falciparum calcium-dependent protein kinase 4 (PfCDPK4) inhibitors that block the transmission of malaria to mosquitoes. Eur. J. Med. Chem. 74, 562–573 (2014).
Rix, U. et al. Chemical proteomic profiles of the BCR-ABL Inhibitors, imatinib, nilotinib, and dasatinib reveal novel kinase and non kinase targets. Blood 110, 4055–4063 (2007).
Graves, P. R. et al. Discovery of novel targets of quinoline drugs in the humanpurine binding proteome. Mol. Pharmacol. 62, 1364–1372 (2002).
Morris, C. A. et al. Review of the clinical pharmacokinetics of artesunate and its active metabolite, dyhydroartemisinin, following intraveneous, intramuscular, oral or rectal administration. Malar. J. 10, 263 (2011).
Tanaka, C. et al. Clinical pharmacokinetics of BCR-ABL tyrosine kinase inhibitor nilotinib. Clin. Pharmacol. Ther. 87, 197–203 (2010).
Faiver, S. et al. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov. 6, 734–745 (2007).
Wilhelm, S. M. et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7, 3129–3140 (2008).
Bonomi, P. Erlotinib: a new therapeutic approach for non-small cell lung cancer. Expert Opin. Investig. Drugs 12, 1395–401 (2003).
Medina, P. J. & Goodin, S. Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin. Ther. 30, 1426–1447 (2008).
Wei, G. et al. First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib. J. Hematol. Oncol. 3, 47 (2010).
Acknowledgements
This study was supported by the Japan Science and Technology (JST), Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP), Feasibility Study (FS) Stage, Seeds Validation (AS2321021G, 2010). We are grateful to Prof. Hirofumi Nakano and Prof. Andy Crump, Kitasato Institute for Life Sciences, Kitasato University, for valuable advice, suggestions and proofreading.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Ishiyama, A., Iwatsuki, M., Hokari, R. et al. Antimalarial activity of kinase inhibitor, nilotinib, in vitro and in vivo. J Antibiot 68, 469–472 (2015). https://doi.org/10.1038/ja.2015.7
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2015.7