Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Tan, R. X. & Zou, W. X. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18, 448–459 (2001).
Schueffler, A. & Anke, T. Fungal natural products in research and development. Nat. Prod. Rep. 31, 1425–1448 (2014).
Keller, N. P. & Wiemann, P. Strategies for mining fungal natural products. J. Ind. Microbiol. Biotechnol. 41, 301–313 (2014).
Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).
Zhang, Q., Li, H. Q., Zong, S. C., Gao, J. M. & Zhang, A. L. Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini Rev. Med. Chem. 12, 127–148 (2012).
Wang, M. H. et al. Stereochemical determination of tetrahydropyran-substituted xanthones from fungus Chaetomium murorum. Chin. Chem. Lett. 26, 1507–1510 (2010).
Cuomo, C. A., Untereiner, W. A., Ma, L. J., Grabherr, M. & Birren, B. W. Draft genome sequence of the cellulolytic fungus Chaetomium globosum. Genome Announc. 3, e00021–15 (2015).
Cichewicz, R. H. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat. Prod. Rep. 27, 11–22 (2010).
Wang, X. R. et al. Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J. Nat. Prod. 73, 942–948 (2010).
Mao, X. M. et al. Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew. Chem. Int. Ed. 54, 7592–7596 (2015).
Phonkerd, N. et al. Bio-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C.cochliodes Cth05. Tetrahedron 64, 9636–9645 (2008).
Yamada, T., Doi, M. & Shigeta, H. Absolute stereostructures of cytotoxic metabolites, chaetomugilins A-C, produced by a Chaetomium species from a marine fish. Tetrahedron Lett. 49, 4192–4195 (2008).
Yasuhide, M., Yamada, T., Numata, A. & Tanka, R. Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fish-derived Chaetomium species. J. Antibiot. 61, 615–622 (2008).
Takahashi, M., Koyama, K. & Natori, S. Four new azaphilones from Chaetomium globosum var. Flavo-viridae. Chem. Pharm. Bull. 38, 625–628 (1990).
Muroga, Y., Yamada, T., Numata, A. & Tanaka, R. 11-and 4′-epimers of chaetomugilin A, novel cytostatic metabolites from marine fish-derived fungus Chaetomium globosum. Helv. Chim. Acta 93, 542–549 (2010).
Borge, S. W. et al. Azaphilones from the endophyte Chaetomium globosum. J. Nat. Prod. 74, 1182–1187 (2011).
Nakazawa, T. et al. Targeted disruption of transcriptional regulators in Chaetomium globosum activates biosynthetic pathways and reveals transcriptional regulator-like bahavior of Aureonitol. J. Am. Chem. Soc. 135, 13446–13455 (2013).
Winter, J. M. et al. Identification and characterization of the chaetoviridin and chaetomugilin gene cluster in Chaetomium globosum reveal dual functions of an iterative highly-reducing polyketide synthase. J. Am. Chem. Soc. 134, 17900–17903 (2012).
Saruwatari, T. et al. Cytochrome P450 as dimerization catalyst in diketopiperazine alkaloid biosynthesis. ChemBioChem 15, 656–659 (2014).
Gao, J. M., Yang, S. X. & Qin, J. C. Azaphilones: chemistry and biology. Chem. Rev. 113, 4755–4811 (2013).
Acknowledgements
We gratefully acknowledge financial supports from the National Natural Science Foundation of China (31570340), PUMC Youth Fund (3332016075), Beijing Natural Science Foundation (7174284) and Syngenta Postgraduate Fellowships awarded to MHW.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on The Journal of Antibiotics website
Supplementary information
Rights and permissions
About this article
Cite this article
Wang, MH., Jiang, T., Ding, G. et al. Molecular epigenetic approach activates silent gene cluster producing dimeric bis-spiro-azaphilones in Chaetomium globosum CBS148.51. J Antibiot 70, 801–804 (2017). https://doi.org/10.1038/ja.2017.4
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2017.4
This article is cited by
-
Activation of secondary metabolite gene clusters in Chaetomium olivaceum via the deletion of a histone deacetylase
Applied Microbiology and Biotechnology (2024)
-
Chemical constituents from the medicinal herb-derived fungus Chaetomium globosum Km1226
Botanical Studies (2023)