Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Population intervention models to estimate ambient NO2 health effects in children with asthma

Abstract

Health effects of ambient air pollution are most frequently expressed in individual studies as responses to a standardized unit of air pollution changes (e.g., an interquartile interval), which is thought to enable comparison of findings across studies. However, this approach does not necessarily convey health effects in terms of a real-world air pollution scenario. In the present study, we use population intervention modeling to estimate the effect of an air pollution intervention that makes explicit reference to the observed exposure data and is identifiable in those data. We calculate the association between ambient summertime nitrogen dioxide (NO2) and forced expiratory flow between 25% and 75% of forced vital capacity (FEF25–75) in a cohort of children with asthma in Fresno, California. We scale the effect size to reflect NO2 abatement on a majority of summer days. The effect estimates were small, imprecise, and consistently indicated improved pulmonary function with decreased NO2. The effects ranged from −0.8% of mean FEF25–75 (95% confidence interval (CI): −3.4, 1.7) to −3.3% (95% CI: −7.5, 0.9). We conclude by discussing the nature and feasibility of the exposure change analyzed here given the observed air pollution profile, and we propose additional applications of population intervention models in environmental epidemiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Fann N, Bell ML, Walker K, Hubbell B . Improving the linkages between air pollution epidemiology and quantitative risk assessment. Environ Health Perspect 2011; 119 (12): 1671–1675.

    Article  Google Scholar 

  2. Bachmann J . Will the circle be unbroken: a history of the US National Ambient Air Quality Standards. J Air Waste Manage Assoc 2007; 57 (6): 652–697.

    Article  CAS  Google Scholar 

  3. Parker J, Rich DQ, Glinianaia SV, Leem JH, Wartenberg D, Bell ML et al. The International Collaboration on Air Pollution and Pregnancy Outcomes: initial results. Environ Health Perspect 2011; 119: 1023–1028.

    Article  Google Scholar 

  4. Greenland S, Maclure M, Schlesselman JJ, Poole C, Morgenstern H . Standardized regression coefficients: a further critique and review of some alternatives. Epidemiology 1991; 2 (5): 387–392.

    Article  CAS  Google Scholar 

  5. Greenland S, Schlesselman JJ, Criqui MH . The fallacy of employing standardized regression coefficients and correlations as measures of effect. Am J Epidemiol 1986; 123 (2): 203–208.

    Article  CAS  Google Scholar 

  6. Pope CA, III . Particulate pollution and health: a review of the Utah valley experience. J Expo Anal Environ Epidemiol 1996; 6 (1): 23–34.

    PubMed  Google Scholar 

  7. Friedman MS, Powell KE, Hutwagner L, Graham LM, Teague WG . Impact of changes in transportation and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood asthma. JAMA 2001; 285 (7): 897–905.

    Article  CAS  Google Scholar 

  8. Hubbell BJ, Hallberg A, McCubbin DR, Post E . Health-related benefits of attaining the 8-hr ozone standard. Environ Health Perspect 2005; 113 (1): 73–82.

    Article  CAS  Google Scholar 

  9. Hubbard AE, van der Laan MJ . Population intervention models in causal inference. Biometrika 2008; 95 (1): 35–47.

    Article  Google Scholar 

  10. Greenland S, Drescher K . Maximum likelihood estimation of the attributable fraction from logistic models. Biometrics 1993; 49 (3): 865–872.

    Article  CAS  Google Scholar 

  11. Robins JM, Hernan MA, Brumback B . Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11 (5): 550–560.

    Article  CAS  Google Scholar 

  12. Galea S . An argument for a consequentialist epidemiology. Am J Epidemiol 2013; 178 (8): 1185–1191.

    Article  Google Scholar 

  13. Westreich D . From exposures to population interventions: pregnancy and response to HIV therapy. Am J Epidemiol 2014; 179 (7): 797–806.

    Article  Google Scholar 

  14. Weinmayr G, Romeo E, De Sario M, Weiland SK, Forastiere F . Short-term effects of PM10 and NO2 on respiratory health among children with asthma or asthma-like symptoms: a systematic review and meta-analysis. Environ Health Perspect 2010; 118 (4): 449–457.

    Article  CAS  Google Scholar 

  15. Williams ML . Patterns of air pollution in developed countries. In: Holgate ST, Samet JM, Koren HS, Maynard RL (eds). Air Pollution and Health. Academic Press: San Diego, CA. 1999.

    Google Scholar 

  16. Jerrett M, Shankardass K, Berhane K, Gauderman WJ, Kunzli N, Avol E et al. Traffic-related air pollution and asthma onset in children: a prospective cohort study with individual exposure measurement. Environ Health Perspect 2008; 116 (10): 1433–1438.

    Article  Google Scholar 

  17. Jalaludin BB, O'Toole BI, Leeder SR . Acute effects of urban ambient air pollution on respiratory symptoms, asthma medication use, and doctor visits for asthma in a cohort of Australian children. Environ Res 2004; 95 (1): 32–42.

    Article  CAS  Google Scholar 

  18. Mortimer KM, Neas LM, Dockery DW, Redline S, Tager IB . The effect of air pollution on inner-city children with asthma. Eur Respir J 2002; 19 (4): 699–705.

    Article  CAS  Google Scholar 

  19. Delfino RJ, Quintana PJ, Floro J, Gastanaga VM, Samimi BS, Kleinman MT et al. Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environ Health Perspect 2004; 112 (8): 932–941.

    Article  CAS  Google Scholar 

  20. Liu L, Poon R, Chen L, Frescura AM, Montuschi P, Ciabattoni G et al. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect 2009; 117 (4): 668–674.

    Article  CAS  Google Scholar 

  21. Lebecque P, Kiakulanda P, Coates AL . Spirometry in the asthmatic child: is FEF25–75 a more sensitive test than FEV1/FVC? Pediatr Pulmonol 1993; 16 (1): 19–22.

    Article  CAS  Google Scholar 

  22. Gold WM . Pulmonary function testing. In: Mason RJ, Broaddus VC, Murray JF, Nadel JA (eds. Murray and Nadel's Textbook of Respiratory Medicine 4th edn. Elsevier Saunders: Philadelphia, PA. 2005.

    Google Scholar 

  23. Mann JK, Balmes JR, Bruckner TA, Mortimer KM, Margolis HG, Pratt B et al. Short-term effects of air pollution on wheeze in asthmatic children in Fresno, California. Environ Health Perspect 2010; 118 (10): 1497–1502.

    Article  CAS  Google Scholar 

  24. Tager IB, Lurmann FW, Haight T, Alcorn S, Penfold B, Hammond SK . Temporal and spatial patterns of ambient endotoxin concentrations in Fresno, California. Environ Health Perspect 2010; 118 (10): 1490–1496.

    Article  CAS  Google Scholar 

  25. Meng YY, Rull RP, Wilhelm M, Lombardi C, Balmes J, Ritz B . Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J Epidemiol Community Health 2009; 64: 142–147.

    Article  Google Scholar 

  26. Mortimer KM, Fallot A, Balmes JR, Tager IB . Evaluating the use of a portable spirometer in a study of pediatric asthma. Chest 2003; 123 (6): 1899–1907.

    Article  Google Scholar 

  27. Hetzel MR, Clark TJ . Comparison of normal and asthmatic circadian rhythms in peak expiratory flow rate. Thorax 1980; 35 (10): 732–738.

    Article  CAS  Google Scholar 

  28. Watson JG, Chow JC, Bowen JL, Lowenthal DH, Hering S, Ouchida P et al. Air quality measurements from the Fresno Supersite. J Air Waste Manage Assoc 2000; 50 (8): 1321–1334.

    Article  CAS  Google Scholar 

  29. Ito K, Thurston GD, Silverman RA . Characterization of PM2.5, gaseous pollutants, and meteorological interactions in the context of time-series health effects models. J Expo Sci Environ Epidemiol 2007; 17 (Suppl 2): S45–S60.

    Article  CAS  Google Scholar 

  30. Delfino RJ, Zeiger RS, Seltzer JM, Street DH, McLaren CE . Association of asthma symptoms with peak particulate air pollution and effect modification by anti-inflammatory medication use. Environ Health Perspect 2002; 110 (10): A607–A617.

    Article  CAS  Google Scholar 

  31. Nicolai T, Illi S, Tenborg J, Kiess W, v Mutius E . Puberty and prognosis of asthma and bronchial hyper-reactivity. Pediatr Allergy Immunol 2001; 12 (3): 142–148.

    Article  CAS  Google Scholar 

  32. Fleischer NL, Fernald LC, Hubbard AE . Estimating the potential impacts of intervention from observational data: methods for estimating causal attributable risk in a cross-sectional analysis of depressive symptoms in Latin America. J Epidemiol Community Health 2010; 64 (1): 16–21.

    Article  CAS  Google Scholar 

  33. Ahern J, Hubbard A, Galea S . Estimating the effects of potential public health interventions on population disease burden: a step-by-step illustration of causal inference methods. Am J Epidemiol 2009; 169 (9): 1140–1147.

    Article  Google Scholar 

  34. Robins J . A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect. Math Modelling 1986; 7 (9–12): 1393–1512.

    Article  Google Scholar 

  35. Snowden JM, Rose S, Mortimer KM . Implementation of G-computation on a simulated data set: demonstration of a causal inference technique. Am J Epidemiol 2011; 173 (7): 731–738.

    Article  Google Scholar 

  36. Basu R, Feng WY, Ostro BD . Characterizing temperature and mortality in nine California counties. Epidemiology 2008; 19 (1): 138–145.

    Article  Google Scholar 

  37. Martinez FD . Natural history. In: Barnes PJ, Drazen JM, Rennard S, Thomson N) (eds. Asthma and COPD: Basic Mechanisms and Clinical Management. Academic Press: London, UK. 2002.

    Google Scholar 

  38. National Heart Lung and Blood Institute and World Health Organization. Global Initiative for Asthma: Global Strategy for Asthma Management and Prevention. National Institutes of Health: Bethesda, MD, USA. 2009.

  39. Cook CD, Hamann JF . Relation of lung volumes to height in healthy persons between the ages of 5 and 38 years. J Pediatr. 1961; 59: 710–714.

    Article  CAS  Google Scholar 

  40. Sinisi SE, van der Laan MJ . Deletion/substitution/addition algorithm in learning with applications in genomics. Stat Appl Genet Mol Biol 2004; 3: Article18.

    Article  Google Scholar 

  41. Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ . Diagnosing and responding to violations in the positivity assumption. Stat Methods Med Res 2010; 21: 31–54.

    Article  Google Scholar 

  42. Dominici F, Peng RD, Barr CD, Bell ML . Protecting human health from air pollution: shifting from a single-pollutant to a multipollutant approach. Epidemiology 2010; 21 (2): 187–194.

    Article  Google Scholar 

  43. Cole SR, Frangakis CE . The consistency statement in causal inference: a definition or an assumption? Epidemiology 2009; 20 (1): 3–5.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the California Air Resources Board (contract 99-322) and the National Heart, Lung, and Blood Institute’s Division of Lung Diseases (grant number R01 HL081521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M Snowden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snowden, J., Mortimer, K., Kang Dufour, MS. et al. Population intervention models to estimate ambient NO2 health effects in children with asthma. J Expo Sci Environ Epidemiol 25, 567–573 (2015). https://doi.org/10.1038/jes.2014.60

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/jes.2014.60

Keywords

This article is cited by

Search

Quick links