Abstract
Milk consumption is prevalent in daily diets of Tibetans. To digest the milk sugar lactose, lactase persistence (LP) should be required. However, little is known about the genetic basis of LP in Tibetans. We screened 495 Tibetan individuals for five previously reported single-nucleotide polymorphisms (SNPs): −13907C/G (rs41525747), −13910C/T (rs4988235), −13915T/G (rs41380347), −14010G/C and −22018G/A (rs182549), which are associated with the LP in populations from a vast region surrounding Tibet. The five SNPs were nearly absent in Tibetan populations, suggesting LP likely to have an independent origin in Tibetans rather than to be introduced via gene flow from neighboring populations. We identified three novel SNPs (−13838G/A, −13906T/A and −13908C/T) in Tibetans. In particular, −13838G/A might be functional as it is located in the binding motif for HNF4α that acts as a transcription factor for intestinal gene expression. To investigate the potential association of this variant with LP, further detailed studies are required in the future.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Accession codes
References
Diamond, J. & Bellwood, P. Farmers and their languages: the first expansions. Science 300, 597–603 (2003).
Patin, E. & Quintana-Murci, L. Demeter’s legacy: rapid changes to our genome imposed by diet. Trends Ecol. Evol. 23, 56–59 (2008).
Laland, K. N., Odling-Smee, J. & Myles, S. How culture shaped the human genome: bringing genetics and the human sciences together. Nat. Rev. Genet. 11, 137–148 (2010).
Wang, Y., Harvey, C. B., Pratt, W. S., Sams, V. R., Sarner, M., Rossi, M. et al. The lactase persistence/non-persistence polymorphism is controlled by a cis-acting element. Hum. Mol. Genet. 4, 657–662 (1995).
Ingram, C. J., Mulcare, C. A., Itan, Y., Thomas, M. G. & Swallow, D. M. Lactose digestion and the evolutionary genetics of lactase persistence. Hum. Genet. 124, 579–591 (2009).
Enattah, N. S., Sahi, T., Savilahti, E., Terwilliger, J. D., Peltonen, L. & Järvelä, I. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 30, 233–237 (2002).
Heyer, E., Brazier, L., Frédéric, L., Hegay, T., Austerlitz, F., Quintana-Murci, L. et al. Lactase persistence in Central Asia: phenotype, genotype, and evolution. Hum. Biol. 83, 379–392 (2011).
Gallego Romero, I., Basu Mallick, C., Liebert, A., Crivellaro, F., Chaubey, G., Itan, Y. et al. Herders of Indian and European cattle share their predominant allele for lactase persistence. Mol. Biol. Evol. 29, 249–260 (2012).
Ingram, C. J., Elamin, M. F., Mulcare, C. A., Weale, M. E., Tarekegn, A., Raga, T. O. et al. A novel polymorphism associated with lactose tolerance in Africa: multiple causes for lactase persistence? Hum. Genet. 120, 779–788 (2007).
Tishkoff, S. A., Reed, F. A., Ranciaro, A., Voight, B. F., Babbitt, C. C., Silverman, J. S. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39, 31–40 (2007).
Bersaglieri, T., Sabeti, P. C., Patterson, N., Vanderploeg, T., Schaffner, S. F., Drake, J. A. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).
Itan, Y., Powell, A., Beaumont, M. A., Burger, J. & Thomas, M. G. The origins of lactase persistence in Europe. PLoS Comput. Biol. 5, e1000491 (2009).
Dong, S. K., Long, R. J. & Kang, M. Y. Milking and milk processing: traditional technologies in the yak farming system of the Qinghai-Tibetan Plateau, China. Int. J. Dairy. Techol 56, 86–93 (2003).
Jiang, Z. & Liu, X.-c. Initial study on the lactose malabsorption and lactose intolerance of Tibetan middle school students. J. Chongqing Med. Univ 20, 272–274 (1995).
Simoons, F. J. Primary adult lactose intolerance and the milking habit: a problem in biologic and cultural interrelations II. A culture historical hypothesis. Am. J. Dig. Dis 15, 695–710 (1970).
Xu, L., Sun, H., Zhang, X., Wang, J., Sun, D., Chen, F. et al. The -22018A allele matches the lactase persistence phenotype in northern Chinese populations. Scand. J. Gastroenterol. 45, 168–174 (2010).
Sun, H. M., Qiao, Y. D., Chen, F., Xu, L. D., Bai, J. & Fu, S. B. The lactase gene -13910T allele can not predict the lactase-persistence phenotype in north China. Asia Pac. J. Clin. Nutr. 16, 598–601 (2007).
Zhao, M., Kong, Q. P., Wang, H. W., Peng, M. S., Xie, X. D., Wang, W. Z. et al. Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 106, 21230–21235 (2009).
Gayden, T., Cadenas, A. M., Regueiro, M., Singh, N. B., Zhivotovsky, L. A., Underhill, P. A. et al. The Himalayas as a directional barrier to gene flow. Am. J. Hum. Genet. 80, 884–894 (2007).
Peng, M. S., Palanichamy, M. G., Yao, Y. G., Mitra, B., Cheng, Y. T., Zhao, M. et al. Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a’b. BMC Biol. 9, 2 (2011).
Lewinsky, R. H., Jensen, T. G., Moller, J., Stensballe, A., Olsen, J. & Troelsen, J. T. T-13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum. Mol. Genet. 14, 3945–3953 (2005).
Rodriguez, S., Gaunt, T. R. & Day, I. N. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am. J. Epidemiol. 169, 505–514 (2009).
Acknowledgements
We are grateful to all the volunteers and samplers. We thank Zhong-Yin Zhou for technical assistance. This study was supported by grants from National Natural Science Foundation of China and Bureau of Science and Technology of Yunnan Province.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Journal of Human Genetics website
Supplementary information
Rights and permissions
About this article
Cite this article
Peng, MS., He, JD., Zhu, CL. et al. Lactase persistence may have an independent origin in Tibetan populations from Tibet, China. J Hum Genet 57, 394–397 (2012). https://doi.org/10.1038/jhg.2012.41
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/jhg.2012.41
Keywords
This article is cited by
-
Development of a novel SNP assay to detect lactase persistence associated genetic variants
Molecular Biology Reports (2021)