Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

The role of microRNA-150 as a tumor suppressor in malignant lymphoma

Abstract

MicroRNA (miRNA; miR) is a class of small regulatory RNA molecules, the aberrant expression of which can lead to the development of cancer. We recently reported that overexpression of miR-21 and/or miR-155 leads to activation of the phosphoinositide 3-kinase (PI3K)–AKT pathway in malignant lymphomas expressing CD3CD56+ natural killer (NK) cell antigen. Through expression analysis, we show in this study that in both NK/T-cell lymphoma lines and samples of primary lymphoma, levels of miR-150 expression are significantly lower than in normal NK cells. To examine its role in lymphomagenesis, we transduced miR-150 into NK/T-cell lymphoma cells, which increased the incidence of apoptosis and reduced cell proliferation. Moreover, the miR-150 transductants appeared senescent and showed lower telomerase activity, resulting in shortened telomeric DNA. We also found that miR-150 directly downregulated expression of DKC1 and AKT2, reduced levels of phosphorylated AKTser473/4 and increased levels of tumor suppressors such as Bim and p53. Collectively, these results suggest that miR-150 functions as a tumor suppressor, and that its aberrant downregulation induces continuous activation of the PI3K–AKT pathway, leading to telomerase activation and immortalization of cancer cells. These findings provide new insight into the pathogenesis of malignant lymphoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jaffe ES, Harris NL, Stein H, Campo E, Pileri SA, Swerdlow SH . Introduction and over review of the classification of the lymphoid neoplasms. In: Swerdloe, A.H., Campo E, Harris NL, Jaffe ES, Stein H, Thiele J, Vardiman JW (eds). World Health Organization Classification of Tumors of Haematopoietic and Lymphoid Tissues. IARC press: Lyon, Washington, 2008, pp 158–178.

    Google Scholar 

  2. Siu LL, Wong KF, Chan TK, Kwong YL . Comparative genomic hybridization analysis of natural killer cell lymphoma. Am J Pathol 1999; 155: 1419–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siu LLP, Chan V, Chan JKC, Wong KF, Liang R, Kwong YL . Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol 2000; 157: 1803–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wong KF, Zhang YM, Chan JK . Cytogenetic abnormalities in natural killer cell lymphoma/leukemia: is there a consistent pattern? Leuk Lymphoma 1999; 34: 241–250.

    Article  CAS  PubMed  Google Scholar 

  5. Yoon J, Ko YH . Deletion mapping of the long arm of chromosome 6 in peripheral T and NK cell lymphomas. Leuk Lymphoma 2003; 44: 2077–2082.

    Article  CAS  PubMed  Google Scholar 

  6. Ko YH, Choi KE, Han JH, Kim JM, Ree HJ . Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry 2001; 46: 85–91.

    Article  CAS  PubMed  Google Scholar 

  7. Nakashima Y, Tagawa H, Suzuki R, Karnan S, Karube K, Ohshima K et al. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal NK/T cell lymphoma, nasal type. Genes Chromosomes Cancer 2005; 44: 247–255.

    Article  CAS  PubMed  Google Scholar 

  8. Iqbal J, Kucuk C, Deleeuw RJ, Srivastava G, Tam W, Geng H et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia 2009; 23: 1139–1151.

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  10. Iorio MV, Croce CM . MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009; 27: 5848–5856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Esquela-Kerscher A, Slack FJ . Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  13. Yamanaka Y, Tagawa H, Takahashi N, Watanabe A, Guo Y-M, Iwamoto K et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood 2009; 114: 3265–3275.

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, de Reynies A, de Leval L, Ghazi B, Martin-Garcia N, Travert M et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 2010; 115: 1226–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kagami Y, Nakamura S, Suzuki R, Iida S, Yatabe Y, Okada Y et al. Establishment of an IL-2-dependent cell line derived from ‘nasal-type’ NK/T-cell lymphoma of CD2+, sCD3-, CD3e+, CD56+ phenotype and associated with the Epstein-Barr virus. Br J Haematol 1998; 103: 669–677.

    Article  CAS  PubMed  Google Scholar 

  16. Nagata H, Konno A, Kimura N, Zhang Y, Kimura M, Demachi A et al. Characterization of novel natural killer (NK)-cell and gamma delta T cell lines established from primary lesions of nasal T/NK cell lymphomas associated with the Epstein-Barr virus. Blood 2001; 97: 708–713.

    Article  CAS  PubMed  Google Scholar 

  17. Matsuo Y, Drexler HG, Takeuchi M, Tanaka M, Orita K . Establishment of the T-cell large granular lymphocyte leukemia cell line MOTN-1 carrying natural killer-cell antigens. Leukemia Res 2002; 26: 873–879.

    Article  CAS  Google Scholar 

  18. Zhang Y, Nagata H, Ikeuchi T, Mukai H, Oyoshi MK, Demachi A et al. Common cytological and cytogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniforme-like eruptions. Br J Haematol 2003; 121: 805–814.

    Article  PubMed  Google Scholar 

  19. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K . MicroRNA-17–92 down regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2009; 113: 396–402.

    Article  CAS  PubMed  Google Scholar 

  20. Chen C-Z, Li L, Lodish HF, Bartel DP . MicroRNA modulate hematopoietic linage differentiation. Science 2004; 303: 83–86.

    Article  CAS  PubMed  Google Scholar 

  21. Merkerova M, Belickova M, Brucova H . Differential expression of microRNAs in hematopoietic cell linages. Eur J Haematol 2008; 81: 304–310.

    Article  CAS  PubMed  Google Scholar 

  22. Counter CM, Botelho FM, Wang P, Harley CB, Bacchetti S . Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J Virol 1994; 68: 3410–3414.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lewis BP, Shih IH, Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  24. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinational microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  25. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146–159.

    Article  CAS  PubMed  Google Scholar 

  26. Tan LP, Wang M, Robertus JL, Schakel RN, Gibcus JH, Diepstra A et al. miRNA profiling of B-cell subsets: specific miRNA profile for germinal center B cells with variation between centroblasts and centrocytes. Lab Invest 2009; 89: 708–716.

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell JR, Wood E, Collins K . A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999; 402: 551–555.

    Article  CAS  PubMed  Google Scholar 

  28. Testa JR, Bellacosa A . AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 2001; 98: 10983–10985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vivanco I, Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  PubMed  Google Scholar 

  30. O’Connor L, Strasser A, O’Reilly LA, Hausmann G, Adams JM, Cory S et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 1998; 17: 384–395.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Iqbal J, Weisenburger DD, Chowdhury A, Tsai MY, Srivastava G, Greiner TC et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic γδ T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia 2011; 25: 348–358.

    Article  CAS  PubMed  Google Scholar 

  32. Ng SB, Selvarajan V, Huang G, Zhou J, Feldman AL, Law M et al. Activated oncogenic pathways and therapeutic targets in extranodal nasal-type NK/T cell lymphoma revealed by gene expression profiling. J Pathol 2011; 223: 496–510.

    Article  CAS  PubMed  Google Scholar 

  33. Ballabio E, Mitchell T, van Kester MS, Taylor S, Dunlop HM, Chi J et al. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential. Blood 2010; 116: 1105–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF . miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 2007; 104: 7080–7085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arranz E, Robledo M, Martinez B, Gallego J, Roman A, Rivas C et al. Incidence of homogeneously staining regions in non-Hodgkin lymphomas. Cancer Genet Cytogenet 1996; 87: 1–3.

    Article  CAS  PubMed  Google Scholar 

  36. Xu X, Sakon M, Nagano H, Hiraoka N, Yamamoto H, Hayashi N et al. Akt2 expression correlates with prognosis of human hepatocellular carcinoma. Oncol Rep 2004; 11: 25–32.

    CAS  PubMed  Google Scholar 

  37. Thompson FH, Nelson MA, Trent JM, Guan XY, Liu Y, Yang JM et al. Amplification of 19q13.1-q13.2 sequences in ovarian cancer. G-band, FISH, and molecular studies. Cancer Genet Cytogenet 1996; 87: 55–62.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 1996; 93: 3636–3641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R et al. Overexpression of AKT2/protein kinase B beta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 2003; 63: 196–206.

    CAS  PubMed  Google Scholar 

  40. Kang SS, Kwon T, Kwon DY, Do SI . Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 1999; 274: 13085–13090.

    Article  CAS  PubMed  Google Scholar 

  41. Plunkett FJ, Franzese O, Finney HM, Fletcher JM, Belaramani LL, Salmon M et al. The loss of telomerase activity in highly differentiated CD8+CD28-CD27-T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol 2007; 178: 7710–7719.

    Article  CAS  PubMed  Google Scholar 

  42. Collado M, Medema RH, Garcia-Cao I, Dubuisson HLN, Barradas M, Glassford J et al. Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J Biol Chem 2002; 275: 21960–21968.

    Article  Google Scholar 

  43. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason SPJ et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998; 19: 32–38.

    Article  CAS  PubMed  Google Scholar 

  44. Mitchell JR, Wood E, Collins K . A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999; 402: 551–555.

    Article  CAS  PubMed  Google Scholar 

  45. Sieron P, Hader C, Hatina J, Engers R, Wlazlinski A, Muller M et al. DKC1 overexpression associated with prostate cancer progression. Br J Cancer 2009; 101: 1410–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Montanaro L, Brigotti M, Clohessy J, Barbieri S, Ceccarelli C, Santini D et al. Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J Pathol 2006; 210: 10–18.

    Article  CAS  PubMed  Google Scholar 

  47. Montanaro L, Calienni M, Ceccarelli C, Santini D, Taffurelli M, Pileri S et al. Relationship between dyskerin expression and telomerase activity in human breast cancer. Cell Oncol 2008; 30: 483–490.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in by a Grant-in-Aid from the Japan Society for the Promotion of Science (HT). We wish to express our appreciation to Ms E Kobayashi, Y Abe, Y Chiba and H Kataho for their outstanding technical assistance, Dr T Nanjo (Akita University, Akita, Japan) and Dr R Ichinohasama (Tohoku University, Sendai, Japan) for their histological and/or clinical diagnosis of lymphoma. Antibody against BCAP was kindly provided from Professor T Kurosaki (RIKEN). pMX vector was kindly provided by Dr T Kitamura (Tokyo University, Tokyo, Japan).

Author contributions

AW performed all experiments, analyzed data, designed experiments and constructed figures and tables. HT designed and performed experiments, analyzed data, wrote the paper and organized the study. JY, KT, MN, KI, MK, YK, NT, TN, SN and KS performed experiments and analyzed data.

Author information

Authors and Affiliations

Corresponding author

Correspondence to H Tagawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, A., Tagawa, H., Yamashita, J. et al. The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia 25, 1324–1334 (2011). https://doi.org/10.1038/leu.2011.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/leu.2011.81

Keywords

This article is cited by

Search

Quick links