Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors

Abstract

Grb2-associated binder 2 (Gab2) serves as a critical amplifier in the signaling network of Bcr-Abl, the driver of chronic myeloid leukemia (CML). Despite the success of tyrosine kinase inhibitors (TKIs) in CML treatment, TKI resistance, caused by mutations in Bcr-Abl or aberrant activity of its network partners, remains a clinical problem. Using inducible expression and knockdown systems, we analyzed the role of Gab2 in Bcr-Abl signaling in human CML cells, especially with respect to TKI sensitivity. We show for the first time that Gab2 signaling protects CML cells from various Bcr-Abl inhibitors (imatinib, nilotinib, dasatinib and GNF-2), whereas Gab2 knockdown or haploinsufficiency leads to increased TKI sensitivity. We dissected the underlying molecular mechanism using various Gab2 mutants and kinase inhibitors and identified the Shp2/Ras/ERK and the PI3K/AKT/mTOR axes as the two critical signaling pathways. Gab2-mediated TKI resistance was associated with persistent phosphorylation of Gab2 Y452, a PI3K recruitment site, and consistent with this finding, the protective effect of Gab2 was completely abolished by the combination of dasatinib with the dual PI3K/mTOR inhibitor NVP-BEZ235. The identification of Gab2 as a novel modulator of TKI sensitivity in CML suggests that Gab2 could be exploited as a biomarker and therapeutic target in TKI-resistant disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. O’Hare T, Deininger MW, Eide CA, Clackson T, Druker BJ . Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia. Clin Cancer Res 2011; 17: 212–221.

    Article  PubMed  Google Scholar 

  2. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    Article  CAS  PubMed  Google Scholar 

  3. Hantschel O, Superti-Furga G . Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 2004; 5: 33–44.

    Article  CAS  PubMed  Google Scholar 

  4. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    Article  CAS  PubMed  Google Scholar 

  5. Brehme M, Hantschel O, Colinge J, Kaupe I, Planyavsky M, Kocher T et al. Charting the molecular network of the drug target Bcr-Abl. Proc Natl Acad Sci U S A 2009; 106: 7414–7419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma SV, Gajowniczek P, Way IP, Lee DY, Jiang J, Yuza Y et al. A common signaling cascade may underlie "addiction" to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 2006; 10: 425–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bixby D, Talpaz M . Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia 2011; 25: 7–22.

    Article  CAS  PubMed  Google Scholar 

  9. Quintas-Cardama A, Kantarjian HM, Cortes JE . Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control 2009; 16: 122–131.

    Article  PubMed  Google Scholar 

  10. Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 2010; 463: 501–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003; 101: 690–698.

    Article  CAS  PubMed  Google Scholar 

  12. Grosso S, Puissant A, Dufies M, Colosetti P, Jacquel A, Lebrigand K et al. Gene expression profiling of imatinib and PD166326-resistant CML cell lines identifies Fyn as a gene associated with resistance to BCR-ABL inhibitors. Mol Cancer Ther 2009; 8: 1924–1933.

    Article  CAS  PubMed  Google Scholar 

  13. Scherr M, Chaturvedi A, Battmer K, Dallmann I, Schultheis B, Ganser A et al. Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood 2006; 107: 3279–3287.

    Article  CAS  PubMed  Google Scholar 

  14. Wöhrle FU, Daly RJ, Brummer T . Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Harkiolaki M, Tsirka T, Lewitzky M, Simister PC, Joshi D, Bird LE et al. Distinct binding modes of two epitopes in Gab2 that interact with the SH3C domain of Grb2. Structure 2009; 17: 809–822.

    Article  CAS  PubMed  Google Scholar 

  16. Wada T, Nakashima T, Oliveira-dos-Santos AJ, Gasser J, Hara H, Schett G et al. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 2005; 11: 394–399.

    Article  CAS  PubMed  Google Scholar 

  17. Gu H, Saito K, Klaman LD, Shen J, Fleming T, Wang Y et al. Essential role for Gab2 in the allergic response. Nature 2001; 412: 186–190.

    Article  CAS  PubMed  Google Scholar 

  18. Li G, Wang Z, Miskimen KL, Zhang Y, Tse W, Bunting KD . Gab2 promotes hematopoietic stem cell maintenance and self-renewal synergistically with STAT5. PLoS One 2010; 5: e9152.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Diaz-Flores E, Li G, Wang Z, Kang Z, Haviernikova E et al. Abnormal hematopoiesis in Gab2 mutant mice. Blood 2007; 110: 116–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lynch DK, Daly RJ . PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2. EMBO J 2002; 21: 72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brummer T, Larance M, Abreu MT, Lyons RJ, Timpson P, Emmerich CH et al. Phosphorylation-dependent binding of 14-3-3 terminates signalling by the Gab2 docking protein. EMBO J 2008; 27: 2305–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abreu MT, Hughes WE, Mele K, Lyons RJ, Rickwood D, Browne BC et al. Gab2 regulates cytoskeletal organization and migration of mammary epithelial cells by modulating RhoA activation. Mol Biol Cell 2011; 22: 105–116.

    Article  PubMed Central  Google Scholar 

  23. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 2005; 7: 179–191.

    Article  CAS  PubMed  Google Scholar 

  24. Xu D, Wang S, Yu WM, Chan G, Araki T, Bunting KD et al. A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. Blood 2010; 116: 3611–3621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aumann K, Lassmann S, Schopflin A, May AM, Wohrle FU, Zeiser R et al. The immunohistochemical staining pattern of Gab2 correlates with distinct stages of chronic myeloid leukemia. Hum Pathol 2011; 42: 719–726.

    Article  CAS  PubMed  Google Scholar 

  26. Brummer T, Schramek D, Hayes VM, Bennett HL, Caldon CE, Musgrove EA et al. Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. J Biol Chem 2006; 281: 626–637.

    Article  CAS  PubMed  Google Scholar 

  27. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A 2006; 103: 2794–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18 000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quintas-Cardama A, Qiu YH, Post SM, Zhang Y, Creighton CJ, Cortes J et al. Reverse phase protein array profiling reveals distinct proteomic signatures associated with chronic myeloid leukemia progression and with chronic phase in the CD34-positive compartment. Cancer 2012; e-pub ahead of print 19 April 2012; doi:10.1002/cncr.27568.

    Article  PubMed  Google Scholar 

  30. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dorsey JF, Cunnick JM, Mane SM, Wu J . Regulation of the Erk2-Elk1 signaling pathway and megakaryocytic differentiation of Bcr-Abl(+) K562 leukemic cells by Gab2. Blood 2002; 99: 1388–1397.

    Article  CAS  PubMed  Google Scholar 

  32. Herr R, Wohrle FU, Danke C, Berens C, Brummer T . A novel MCF-10A line allowing conditional oncogene expression in 3D culture. Cell Commun Signal 2011; 9: 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu J, Meng F, Lu H, Kong L, Bornmann W, Peng Z et al. Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells. Blood 2008; 111: 3821–3829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dai Y, Rahmani M, Corey SJ, Dent P, Grant S . A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem 2004; 279: 34227–34239.

    Article  CAS  PubMed  Google Scholar 

  35. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–1782.

    Article  CAS  PubMed  Google Scholar 

  36. Bennett HL, Brummer T, Jeanes A, Yap AS, Daly RJ . Gab2 and Src co-operate in human mammary epithelial cells to promote growth factor independence and disruption of acinar morphogenesis. Oncogene 2008; 27: 2693–2704.

    Article  CAS  PubMed  Google Scholar 

  37. O’Hare T, Eide CA, Deininger MW . Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007; 110: 2242–2249.

    Article  PubMed  Google Scholar 

  38. Samanta A, Perazzona B, Chakraborty S, Sun X, Modi H, Bhatia R et al. Janus kinase 2 regulates Bcr-Abl signaling in chronic myeloid leukemia. Leukemia 2011; 25: 463–472.

    Article  CAS  PubMed  Google Scholar 

  39. Roelz R, Pilz IH, Mutschler M, Pahl HL . Of mice and men: human RNA polymerase III promoter U6 is more efficient than its murine homologue for shRNA expression from a lentiviral vector in both human and murine progenitor cells. Exp Hematol 2010; 38: 792–797.

    Article  CAS  PubMed  Google Scholar 

  40. Hiwase DK, White DL, Powell JA, Saunders VA, Zrim SA, Frede AK et al. Blocking cytokine signaling along with intense Bcr-Abl kinase inhibition induces apoptosis in primary CML progenitors. Leukemia 2010; 24: 771–778.

    Article  CAS  PubMed  Google Scholar 

  41. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008; 7: 1851–1863.

    Article  CAS  PubMed  Google Scholar 

  42. Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci U S A 2004; 101: 3130–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Warsch W, Kollmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Holbl A et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 2011; 117: 3409–3420.

    Article  CAS  PubMed  Google Scholar 

  44. Wu J, Meng F, Kong LY, Peng Z, Ying Y, Bornmann WG et al. Association between imatinib-resistant BCR-ABL mutation-negative leukemia and persistent activation of LYN kinase. J Natl Cancer Inst 2008; 100: 926–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Futami M, Zhu QS, Whichard ZL, Xia L, Ke Y, Neel BG et al. G-CSF receptor activation of the Src kinase Lyn is mediated by Gab2 recruitment of the Shp2 phosphatase. Blood 2011; 118: 1077–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmidt T, Kharabi Masouleh B, Loges S, Cauwenberghs S, Fraisl P, Maes C et al. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1(+) leukemia. Cancer Cell 2011; 19: 740–753.

    Article  CAS  PubMed  Google Scholar 

  47. Peng Z, Luo HW, Yuan Y, Shi J, Huang SF, Li CL et al. Growth of chronic myeloid leukemia cells is inhibited by infection with Ad-SH2-HA adenovirus that disrupts Grb2-Bcr-Abl complexes. Oncol Rep 2011; 25: 1381–1388.

    CAS  PubMed  Google Scholar 

  48. Modi H, Li L, Chu S, Rossi J, Yee JK, Bhatia R . Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia 2011; 25: 305–312.

    Article  CAS  PubMed  Google Scholar 

  49. Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, Vogel W et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 1998; 95: 793–803.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Alexander Kühnemund and members of the Brummer laboratory for helpful discussions, Andreas Geissler for advice on the caspase assays and Katja Thurig, Christine Capri and Jennifer Schwarz for technical assistance. TB is supported by the German Research Foundation (DFG) through the Emmy-Noether-Program (BR3662/1-1) and EXC 294 BIOSS. FUW is funded by the Excellence Initiative of the DFG (GSC-4; Spemann Graduate School for Biology and Medicine) and EXC 294 BIOSS. RZ is supported by the DFG (ZE 872/1–1 and Heisenberg Fellowship ZE 872/2–1). SL, MW, RZ and TB are also supported by the DFG funded Collaborative Research Center 850. HLP gratefully acknowledges support by the DFG (Pa 611/5-1 and Pa 611/6-1) as well as the NIH (PO1 CA108671). RJD is supported by the National Health and Medical Research Council of Australia. DS is supported by the Austrian Academy of Sciences through an APART fellowship. KA is supported by a fellowship of the medical faculty of the University of Freiburg.

Author contributions

FUW, SH, SS and SB performed all cellular and biochemical experiments. KA conducted the IHC analyses. KA, SL, HLP, MW, CFW and RZ provided clinical samples and expertise. PA, DS and JMP provided critical reagents and mice. All authors contributed to the design, analysis and discussion of experiments. TB wrote the manuscript together with FUW, SH and RJD. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Corresponding author

Correspondence to T Brummer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wöhrle, F., Halbach, S., Aumann, K. et al. Gab2 signaling in chronic myeloid leukemia cells confers resistance to multiple Bcr-Abl inhibitors. Leukemia 27, 118–129 (2013). https://doi.org/10.1038/leu.2012.222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/leu.2012.222

Keywords

This article is cited by

Search

Quick links