Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Infectious medicine, virology

Principal component analysis uncovers cytomegalovirus-associated NK cell activation in Ph+ leukemia patients treated with dasatinib

A Corrigendum to this article was published on 04 January 2017

Abstract

Dasatinib treatment markedly increases the number of large granular lymphocytes (LGLs) in a proportion of Ph+ leukemia patients, which associates with a better prognosis. The lymphocytosis is predominantly observed in cytomegalovirus (CMV)-seropositive patients, yet detectable CMV reactivation exists only in a small fraction of patients. Thus, etiology of the lymphocytosis still remains unclear. Here, we identified NK cells as the dominant LGLs expanding in dasatinib-treated patients, and applied principal component analysis (PCA) to an extensive panel of NK cell markers to explore underlying factors in NK cell activation. PCA displayed phenotypic divergence of NK cells that reflects CMV-associated differentiation and genetic differences, and the divergence was markedly augmented in CMV-seropositive dasatinib-treated patients. Notably, the CMV-associated highly differentiated status of NK cells was already observed at leukemia diagnosis, and was further enhanced after starting dasatinib in virtually all CMV-seropositive patients. Thus, the extensive characterization of NK cells by PCA strongly suggests that CMV is an essential factor in the NK cell activation, which progresses stepwise during leukemia and subsequent dasatinib treatment most likely by subclinical CMV reactivation. This study provides a rationale for the exploitation of CMV-associated NK cell activation for treatment of leukemias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kim DH, Kamel-Reid S, Chang H, Sutherland R, Jung CW, Kim HJ et al. Natural killer or natural killer/T cell lineage large granular lymphocytosis associated with dasatinib therapy for Philadelphia chromosome positive leukemia. Haematologica 2009; 94: 135–139.

    Article  CAS  Google Scholar 

  2. Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia 2009; 23: 1398–1405.

    Article  CAS  Google Scholar 

  3. Kreutzman A, Juvonen V, Kairisto V, Ekblom M, Stenke L, Seggewiss R et al. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood 2010; 116: 772–782.

    Article  CAS  Google Scholar 

  4. Li J, Rix U, Fang B, Bai Y, Edwards A, Colinge J et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat Chem Biol 2010; 6: 291–299.

    Article  CAS  Google Scholar 

  5. Weichsel R, Dix C, Wooldridge L, Clement M, Fenton-May A, Sewell AK et al. Profound inhibition of antigen-specific T-cell effector functions by dasatinib. Clin Cancer Res 2008; 14: 2484–2491.

    Article  CAS  Google Scholar 

  6. Schade AE, Schieven GL, Townsend R, Jankowska AM, Susulic V, Zhang R et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood 2008; 111: 1366–1377.

    Article  CAS  Google Scholar 

  7. Blake SJ, Bruce Lyons A, Fraser CK, Hayball JD, Hughes TP . Dasatinib suppresses in vitro natural killer cell cytotoxicity. Blood 2008; 111: 4415–4416.

    Article  CAS  Google Scholar 

  8. Fujita H, Kitawaki T, Sato T, Maeda T, Kamihira S, Takaori-Kondo A et al. The tyrosine kinase inhibitor dasatinib suppresses cytokine production by plasmacytoid dendritic cells by targeting endosomal transport of CpG DNA. Eur J Immunol 2013; 43: 93–103.

    Article  CAS  Google Scholar 

  9. Kreutzman A, Ladell K, Koechel C, Gostick E, Ekblom M, Stenke L et al. Expansion of highly differentiated CD8+ T-cells or NK-cells in patients treated with dasatinib is associated with cytomegalovirus reactivation. Leukemia 2011; 25: 1587–1597.

    Article  CAS  Google Scholar 

  10. Tanaka H, Nakashima S, Usuda M . Rapid and sustained increase of large granular lymphocytes and rare cytomegalovirus reactivation during dasatinib treatment in chronic myelogenous leukemia patients. Int J Hematol 2012; 96: 308–319.

    Article  CAS  Google Scholar 

  11. Vivier E, Anfossi N . Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 2004; 4: 190–198.

    Article  CAS  Google Scholar 

  12. Ringner M . What is principal component analysis? Nat Biotechnol 2008; 26: 303–304.

    Article  CAS  Google Scholar 

  13. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM . Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 2012; 36: 142–152.

    Article  CAS  Google Scholar 

  14. Bezman NA, Kim CC, Sun JC, Min-Oo G, Hendricks DW, Kamimura Y et al. Molecular definition of the identity and activation of natural killer cells. Nat Immunol 2012; 13: 1000–1009.

    Article  CAS  Google Scholar 

  15. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 2013; 5: 208ra145.

    Article  Google Scholar 

  16. Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malats N, Lopez-Botet M . Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 2004; 104: 3664–3671.

    Article  CAS  Google Scholar 

  17. Lopez-Verges S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, York VA et al. Expansion of a unique CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci USA 2011; 108: 14725–14732.

    Article  CAS  Google Scholar 

  18. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 2012; 119: 2665–2674.

    Article  CAS  Google Scholar 

  19. Muntasell A, Vilches C, Angulo A, Lopez-Botet M . Adaptive reconfiguration of the human NK-cell compartment in response to cytomegalovirus: a different perspective of the host-pathogen interaction. Eur J Immunol 2013; 43: 1133–1141.

    Article  CAS  Google Scholar 

  20. Lopez-Botet M, Muntasell A, Vilches C . The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin Immunol 2014; 26: 145–151.

    Article  CAS  Google Scholar 

  21. Miyashita R, Tsuchiya N, Hikami K, Kuroki K, Fukazawa T, Bijl M et al. Molecular genetic analyses of human NKG2C (KLRC2) gene deletion. Int Immunol 2004; 16: 163–168.

    Article  CAS  Google Scholar 

  22. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 2006; 25: 331–342.

    Article  CAS  Google Scholar 

  23. Beziat V, Liu LL, Malmberg JA, Ivarsson MA, Sohlberg E, Bjorklund AT et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 2013; 121: 2678–2688.

    Article  CAS  Google Scholar 

  24. Djaoud Z, David G, Bressollette C, Willem C, Rettman P, Gagne K et al. Amplified NKG2C+ NK cells in cytomegalovirus (CMV) infection preferentially express killer cell Ig-like receptor 2DL: functional impact in controlling CMV-infected dendritic cells. J Immunol 2013; 191: 2708–2716.

    Article  CAS  Google Scholar 

  25. van Stijn A, Rowshani AT, Yong SL, Baas F, Roosnek E, ten Berge IJ et al. Human cytomegalovirus infection induces a rapid and sustained change in the expression of NK cell receptors on CD8+ T cells. J Immunol 2008; 180: 4550–4560.

    Article  CAS  Google Scholar 

  26. Bjorkstrom NK, Beziat V, Cichocki F, Liu LL, Levine J, Larsson S et al. CD8 T cells express randomly selected KIRs with distinct specificities compared with NK cells. Blood 2012; 120: 3455–3465.

    Article  Google Scholar 

  27. Beziat V, Dalgard O, Asselah T, Halfon P, Bedossa P, Boudifa A et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol 2012; 42: 447–457.

    Article  CAS  Google Scholar 

  28. Imagawa J, Tanaka H, Matsumoto K, Morita K, Harada Y, Harada H . A sharp fluctuation in peripheral blood cells shortly after dasatinib administration. Int J Hematol 2012; 96: 194–199.

    Article  CAS  Google Scholar 

  29. Mustjoki S, Auvinen K, Kreutzman A, Rousselot P, Hernesniemi S, Melo T et al. Rapid mobilization of cytotoxic lymphocytes induced by dasatinib therapy. Leukemia 2013; 27: 914–924.

    Article  CAS  Google Scholar 

  30. Bjorkstrom NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med 2011; 208: 13–21.

    Article  Google Scholar 

  31. Petitdemange C, Becquart P, Wauquier N, Beziat V, Debre P, Leroy EM et al. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog 2011; 7: e1002268.

    Article  CAS  Google Scholar 

  32. Lee KC, Ouwehand I, Giannini AL, Thomas NS, Dibb NJ, Bijlmakers MJ . Lck is a key target of imatinib and dasatinib in T-cell activation. Leukemia 2010; 24: 896–900.

    Article  CAS  Google Scholar 

  33. Salih J, Hilpert J, Placke T, Grunebach F, Steinle A, Salih HR et al. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer 2010; 127: 2119–2128.

    Article  CAS  Google Scholar 

  34. Hermouet S, Sutton CA, Rose TM, Greenblatt RJ, Corre I, Garand R et al. Qualitative and quantitative analysis of human herpesviruses in chronic and acute B cell lymphocytic leukemia and in multiple myeloma. Leukemia 2003; 17: 185–195.

    Article  CAS  Google Scholar 

  35. Marin D, Ibrahim AR, Lucas C, Gerrard G, Wang L, Szydlo RM et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol 2012; 30: 232–238.

    Article  CAS  Google Scholar 

  36. Rolle A, Brodin P . Immune adaptation to environmental influence: the case of NK Cells and HCMV. Trends Immunol 2016; 37: 233–243.

    Article  Google Scholar 

  37. Lee J, Zhang T, Hwang I, Kim A, Nitschke L, Kim M et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 2015; 42: 431–442.

    Article  CAS  Google Scholar 

  38. Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TD et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 2015; 42: 443–456.

    Article  CAS  Google Scholar 

  39. Mahon F-X, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11: 1029–1035.

    Article  CAS  Google Scholar 

  40. Imagawa J, Tanaka H, Okada M, Nakamae H, Hino M, Murai K et al. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial. Lancet Haematol 2015; 2: e528–e535.

    Article  Google Scholar 

  41. Mizoguchi I, Yoshimoto T, Katagiri S, Mizuguchi J, Tauchi T, Kimura Y et al. Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib. Cancer Sci 2013; 104: 1146–1153.

    Article  CAS  Google Scholar 

  42. Hilpert J, Grosse-Hovest L, Grunebach F, Buechele C, Nuebling T, Raum T et al. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D-mediated NK cell responses. J Immunol 2012; 189: 1360–1371.

    Article  CAS  Google Scholar 

  43. Moretta A, Marcenaro E, Sivori S, Della Chiesa M, Vitale M, Moretta L . Early liaisons between cells of the innate immune system in inflamed peripheral tissues. Trends Immunol 2005; 26: 668–675.

    Article  CAS  Google Scholar 

  44. Duerkop BA, Hooper LV . Resident viruses and their interactions with the immune system. Nat Immunol 2013; 14: 654–659.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K Ohmori, K Fukunaga, M Tozaki, M Takahara and M Ohnishi for the excellent technical support. This work was supported by research funding from Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Kadowaki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiyama, Ki., Kitawaki, T., Sugimoto, N. et al. Principal component analysis uncovers cytomegalovirus-associated NK cell activation in Ph+ leukemia patients treated with dasatinib. Leukemia 31, 203–212 (2017). https://doi.org/10.1038/leu.2016.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/leu.2016.174

This article is cited by

Search

Quick links