Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

HBZ-mediated shift of JunD from growth suppressor to tumor promoter in leukemic cells by inhibition of ribosomal protein S25 expression

Abstract

Human T-cell leukemia virus type 1 (HTLV-1) basic-leucine zipper (bZIP) factor (HBZ) is a key player in proliferation and transformation of HTLV-1-infected cells, thus contributing to adult T-cell leukemia (ATL) development. HBZ deregulates gene expression within the host cell by interacting with several cellular partners. Through its C-terminal ZIP domain, HBZ is able to contact and activate JunD, a transcription factor of the AP-1 family. JunD mRNA is intronless but can generate two protein isoforms by alternative translation initiation: JunD full-length and Δ JunD, an N-terminal truncated form unresponsive to the tumor suppressor menin. Using various cell lines and primary T-lymphocytes, we show that after serum deprivation HBZ induces the expression of Δ JunD isoform. We demonstrate that, unlike JunD, Δ JunD induces proliferation and transformation of cells. To decipher the mechanisms for Δ JunD production, we looked into the translational machinery and observed that HBZ induces nuclear retention of RPS25 mRNA and loss of RPS25 protein expression, a component of the small ribosomal subunit. Therefore, HBZ bypasses translational control of JunD uORF and favors the expression of Δ JunD. In conclusion, we provide strong evidences that HBZ induces Δ JunD expression through alteration of the cellular translational machinery and that the truncated isoform Δ JunD has a central role in the oncogenic process leading to ATL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gallo RC . The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology 2005; 2: 17.

    Article  Google Scholar 

  2. Takatsuki K . Discovery of adult T-cell leukemia. Retrovirology 2005; 2: 16.

    Article  Google Scholar 

  3. Shimoyama M . Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol 1991; 79: 428–437.

    Article  CAS  Google Scholar 

  4. Mortreux F, Gabet AS, Wattel E . Molecular and cellular aspects of HTLV-1 associated leukemogenesis in vivo. Leukemia 2003; 17: 26–38.

    Article  CAS  Google Scholar 

  5. Matsuoka M, Jeang KT . Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 2007; 7: 270–280.

    Article  CAS  Google Scholar 

  6. Peloponese JM, Yeung ML, Jeang KT . Modulation of nuclear factor-kappaB by human T cell leukemia virus type 1 Tax protein: implications for oncogenesis and inflammation. Immunol Res 2006; 34: 1–12.

    Article  CAS  Google Scholar 

  7. Enose-Akahata Y, Abrams A, Johnson KR, Maloney EM, Jacobson S . Quantitative differences in HTLV-I antibody responses: classification and relative risk assessment for asymptomatic carriers and ATL and HAM/TSP patients from Jamaica. Blood 2012; 119: 2829–2836.

    Article  CAS  Google Scholar 

  8. Kannian P, Yin H, Doueiri R, Lairmore MD, Fernandez S, Green PL . Distinct transformation tropism exhibited by human T lymphotropic virus type 1 (HTLV-1) and HTLV-2 is the result of postinfection T cell clonal expansion. J Virol 2012; 86: 3757–3766.

    Article  CAS  Google Scholar 

  9. Satou Y, Yasunaga J-I, Yoshida M, Matsuoka M . HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci USA 2006; 103: 720–725.

    Article  CAS  Google Scholar 

  10. Takeda S, Maeda M, Morikawa S, Taniguchi Y, Yasunaga J, Nosaka K et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer 2004; 20: 559–567.

    Article  Google Scholar 

  11. Arnold J, Zimmerman B, Li M, Lairmore MD, Green PL . Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation. Blood 2008; 112: 3788–3797.

    Article  CAS  Google Scholar 

  12. Gazon H, Lemasson I, Polakowski N, Cesaire R, Matsuoka M, Barbeau B et al. Human T-cell leukemia virus type 1 (HTLV-1) bZIP factor requires cellular transcription factor JunD to upregulate HTLV-1 antisense transcription from the 3' long terminal repeat. J Virol 2012; 86: 9070–9078.

    Article  CAS  Google Scholar 

  13. Landry S, Halin M, Vargas A, Lemasson I, Mesnard JM, Barbeau B . Upregulation of human T-cell leukemia virus type 1 antisense transcription by the viral tax protein. J Virol 2009; 83: 2048–2054.

    Article  CAS  Google Scholar 

  14. Yoshida M, Satou Y, Yasunaga J, Fujisawa J-I, Matsuoka M . Transcriptional control of spliced and unspliced HTLV-1 bZIP factor gene. J Virol 2008; 82: 9359–9368.

    Article  CAS  Google Scholar 

  15. Koiwa T, Hamano-Usami A, Ishida T, Okayama A, Yamaguchi K, Kamahira S et al. 5'-Long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type I provirus in vitro and in vivo. J Virol 2002; 76: 9389–9397.

    Article  CAS  Google Scholar 

  16. Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard JM . The complementary strand of HTLV-1 RNA genome encodes a bZIP transcription factor that down-regulates the viral transcription. J Virol 2002; 76: 12813–12822.

    Article  CAS  Google Scholar 

  17. Hivin P, Arpin-André C, Clerc I, Barbeau B, Mesnard JM . A modified version of a Fos-associated cluster in HBZ affects Jun transcriptional potency. Nucleic Acids Res 2006; 34: 2761–2772.

    Article  CAS  Google Scholar 

  18. Clerc I, Polakowski N, Andre-Arpin C, Cook P, Barbeau B, Mesnard J-M et al. An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of tax-dependent viral transcription by HBZ. J Biol Chem 2008; 283: 23903–23913.

    Article  CAS  Google Scholar 

  19. Hivin P, Frédéric M, Arpin-André C, Basbous J, Gay B, Thébault S et al. Nuclear localization of HTLV-I bZIP factor (HBZ) is mediated by three distinct motifs. J Cell Sci 2005; 118: 1355–1362.

    Article  CAS  Google Scholar 

  20. Lemasson I, Lewis MR, Polakowski N, Hivin P, Cavanagh MH, Thebault S et al. Human T-cell leukemia virus type 1 (HTLV-1) bZIP protein interacts with the cellular transcription factor CREB to inhibit HTLV-1 transcription. J Virol 2007; 81: 1543–1553.

    Article  CAS  Google Scholar 

  21. Hagiya K, Yasunaga J, Satou Y, Ohshima K, Matsuoka M . ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells. Retrovirology 2011; 8: 19.

    Article  CAS  Google Scholar 

  22. Zhao T, Coutts A, Xu L, Yu J, Ohshima K, Matsuoka M . HTLV-1 bZIP factor supports proliferation of adult T cell leukemia cells through suppression of C/EBPalpha signaling. Retrovirology 2013; 10: 159.

    Article  CAS  Google Scholar 

  23. Reinke AW, Grigoryan G, Keating AE . Identification of bZIP interaction partners of viral proteins HBZ, MEQ, BZLF1, and K-bZIP using coiled-coil arrays. Biochemistry 2010; 49: 1985–1997.

    Article  CAS  Google Scholar 

  24. Basbous J, Arpin C, Gaudray G, Piechaczyk M, Devaux C, Mesnard JM . HBZ factor of HTLV-I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity. J Biol Chem 2003; 278: 43620–43627.

    Article  CAS  Google Scholar 

  25. Hivin P, Basbous J, Raymond F, Henaff D, Arpin-Andre C, Robert-Hebmann V et al. The HBZ-SP1 isoform of human T-cell leukemia virus type I represses JunB activity by sequestration into nuclear bodies. Retrovirology 2007; 4: 14.

    Article  Google Scholar 

  26. Thébault S, Basbous J, Hivin P, Devaux C, Mesnard JM . HBZ interacts with JunD and stimulates its transcriptional activity. FEBS Lett 2004; 562: 165–170.

    Article  Google Scholar 

  27. Kuhlmann AS, Villaudy J, Gazzolo L, Castellazzi M, Mesnard JM, Duc Dodon M, HTLV-1 HBZ . cooperates with JunD to enhance transcription of the human telomerase reverse transcriptase gene (hTERT). Retrovirology 2007; 4: 92.

    Article  Google Scholar 

  28. Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K . Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 2008; 27: 4757–4767.

    Article  CAS  Google Scholar 

  29. Pfarr CM, Mechta F, Spyrou G, Lallemand D, Carillo S, Yaniv M . Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 1994; 76: 747–760.

    Article  CAS  Google Scholar 

  30. Mori N, Fujii M, Iwai K, Ikeda S, Yamasaki Y, Hata T et al. Constitutive activation of transcription factor AP-1 in primary adult T-cell leukemia cells. Blood 2000; 95: 3915–3921.

    CAS  PubMed  Google Scholar 

  31. Barbeau B, Mesnard JM . Does the HBZ gene represent a new potential target for the treatment of adult T-cell leukemia? Int Rev Immunol 2007; 26: 283–304.

    Article  CAS  Google Scholar 

  32. Belrose G, Gross A, Olindo S, Lezin A, Dueymes M, Komla-Soukha I et al. Effects of valproate on Tax and HBZ expression in HTLV-1 and HAM/TSP T lymphocytes. Blood 2011; 118: 2483–2491.

    Article  CAS  Google Scholar 

  33. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al. Landscape of transcription in human cells. Nature 2012; 489: 101–108.

    Article  CAS  Google Scholar 

  34. Ke N, Albers A, Claassen G, Yu DH, Chatterton JE, Hu X et al. One-week 96-well soft agar growth assay for cancer target validation. BioTechniques 2004; 36: 826–828, 830, 832–823.

    Article  CAS  Google Scholar 

  35. Schneider CA, Rasband WS, Eliceiri KW . NIH: Imageto ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671–675.

    Article  CAS  Google Scholar 

  36. Gazon H, Belrose G, Terol M, Meniane JC, Mesnard JM, Cesaire R et al. Impaired expression of DICER and some microRNAs in HBZ expressing cells from acute adult T-cell leukemia patients. Oncotarget 2016; 7: 30258–30275.

    Article  Google Scholar 

  37. Nakatani Y, Ogryzko V . Immunoaffinity purification of mammalian protein complexes. Methods Enzymol 2003; 370: 430–444.

    Article  CAS  Google Scholar 

  38. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474: 654–657.

    Article  CAS  Google Scholar 

  39. Barbeau B, Mesnard JM . Making sense out of antisense transcription in human T-cell lymphotropic viruses (HTLVs). Viruses 2011; 3: 456–468.

    Article  CAS  Google Scholar 

  40. Belrose G, Gross A, Olindo S, Lezin A, Dueymes M, Komla-Soukha I et al. Opposite effects of valproate on Tax and HBZ expressions in T-lymphocytes from HTLV-1 asymptomatic carriers and HAM/TSP patients. Blood 2011; 118: 2483–2491.

    Article  CAS  Google Scholar 

  41. Shuh M, Hill SA, Derse D . Defective and wild-type human T-cell leukemia virus type I proviruses: characterization of gene products and trans-interactions between proviruses. Virology 1999; 262: 442–451.

    Article  CAS  Google Scholar 

  42. Shiohama Y, Naito T, Matsuzaki T, Tanaka R, Tomoyose T, Takashima H et al. Absolute quantification of HTLV-1 basic leucine zipper factor (HBZ) protein and its plasma antibody in HTLV-1 infected individuals with different clinical status. Retrovirology 2016; 13: 29.

    Article  Google Scholar 

  43. Fujii M, Niki T, Mori T, Matsuda T, Matsui M, Nomura N et al. HTLV-1 Tax induces expression of various immediate early serum responsive genes. Oncogene 1991; 6: 1023–1029.

    CAS  PubMed  Google Scholar 

  44. Agarwal SK, Novotny EA, Crabtree JS, Weitzman JB, Yaniv M, Burns AL et al. Transcription factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proc Natl Acad Sci USA 2003; 100: 10770–10775.

    Article  CAS  Google Scholar 

  45. Risser R, Pollack R . A nonselective analysis of SV40 transformation of mouse 3T3 cells. Virology 1974; 59: 477–489.

    Article  CAS  Google Scholar 

  46. Enose-Akahata Y, Caruso B, Haner B, Charlip E, Nair G, Massoud R et al. Development of neurologic diseases in a patient with primate T lymphotropic virus type 1 (PTLV-1). Retrovirology 2016; 13: 56.

    Article  Google Scholar 

  47. Vandamme AM, Salemi M, Desmyter J . The simian origins of the pathogenic human T-cell lymphotropic virus type I. Trends Microbiol 1998; 6: 477–483.

    Article  CAS  Google Scholar 

  48. Wethmar K, Smink JJ, Leutz A . Upstream open reading frames: molecular switches in (patho)physiology. BioEssays 2010; 32: 885–893.

    Article  CAS  Google Scholar 

  49. Mauro VP, Chappell SA, Dresios J . Analysis of ribosomal shunting during translation initiation in eukaryotic mRNAs. Methods Enzymol 2007; 429: 323–354.

    Article  CAS  Google Scholar 

  50. Ruggero D, Pandolfi PP . Does the ribosome translate cancer? Nat Rev Cancer 2003; 3: 179–192.

    Article  CAS  Google Scholar 

  51. Stumpf CR, Ruggero D . The cancerous translation apparatus. Curr Opin Genet Dev 2011; 21: 474–483.

    Article  CAS  Google Scholar 

  52. Adilakshmi T, Laine RO . Ribosomal protein S25 mRNA partners with MTF-1 and La to provide a p53-mediated mechanism for survival or death. J Biol Chem 2002; 277: 4147–4151.

    Article  CAS  Google Scholar 

  53. Zhang X, Wang W, Wang H, Wang MH, Xu W, Zhang R . Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene 2013; 32: 2782–2791.

    Article  CAS  Google Scholar 

  54. Laine RO, Shay NF, Kilberg MS . Nuclear retention of the induced mRNA following amino acid-dependent transcriptional regulation of mammalian ribosomal proteins L17 and S25. J Biol Chem 1994; 269: 9693–9697.

    CAS  PubMed  Google Scholar 

  55. Kim H, Lee JE, Cho EJ, Liu JO, Youn HD . Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res 2003; 63: 6135–6139.

    CAS  PubMed  Google Scholar 

  56. Short JD, Pfarr CM . Translational regulation of the JunD messenger RNA. J Biol Chem 2002; 277: 32697–32705.

    Article  CAS  Google Scholar 

  57. Borowiak M, Kuhlmann AS, Girard S, Gazzolo L, Mesnard JM, Jalinot P et al. HTLV-1 bZIP factor impedes the menin tumor suppressor and upregulates JunD-mediated transcription of the hTERT gene. Carcinogenesis 2013; 34: 2664–2672.

    Article  CAS  Google Scholar 

  58. de Wilde J, De-Castro Arce J, Snijders PJ, Meijer CJ, Rosl F, Steenbergen RD . Alterations in AP-1 and AP-1 regulatory genes during HPV-induced carcinogenesis. Cell Oncol 2008; 30: 77–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Barbosa C, Peixeiro I, Romao L . Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 2013; 9: e1003529.

    Article  CAS  Google Scholar 

  60. Mesnard JM, Barbeau B, Cesaire R, Peloponese JM . Roles of HTLV-1 basic zip factor (HBZ) in viral chronicity and leukemic transformation. potential new therapeutic approaches to prevent and treat HTLV-1-related diseases. Viruses 2015; 7: 6490–6505.

    Article  CAS  Google Scholar 

  61. Hertz MI, Landry DM, Willis AE, Luo G, Thompson SR . Ribosomal protein S25 dependency reveals a common mechanism for diverse internal ribosome entry sites and ribosome shunting. Mol Cell Biol 2013; 33: 1016–1026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly thank Dr Mauro for the gift of p3(AUG)− vectors, Dr Benkirane for the gift of pOZ vectors. We would like to thank Dr Polakowski for readings of manuscript. This work was supported by the ARC foundation, the Fondation pour la Recherche Médicale (Equipe FRM DEQ20161136701), the GEFLUC Languedoc-Roussillon and the Ligue Contre le Cancer, Comité Hérault. HG was supported by a grant from the Conseil Régional de la Martinique.

Author contributions

J-MP designed and performed research. MT and HG performed research and equally contributed to the paper. DD, BB and RC contributed vital new reagents or analytical tools; J-MM and J-MP wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J-M Mesnard or J-M Péloponèse Jr.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terol, M., Gazon, H., Lemasson, I. et al. HBZ-mediated shift of JunD from growth suppressor to tumor promoter in leukemic cells by inhibition of ribosomal protein S25 expression. Leukemia 31, 2235–2243 (2017). https://doi.org/10.1038/leu.2017.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/leu.2017.74

This article is cited by

Search

Quick links