Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An optical spectrum of the afterglow of a γ-ray burst at a redshift of z = 6.295

Abstract

The prompt γ-ray emission from γ-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe1,2,3,4. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 Å due to Lyman α absorption at z ≈ 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 ± 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spectrum of the afterglow of GRB 050904.

Similar content being viewed by others

References

  1. Lamb, D. Q. & Reichart, D. E. Gamma-ray bursts as a probe of the very high redshift Universe. Astrophys. J. 536, 1–18 (2000)

    Article  ADS  Google Scholar 

  2. Miralda-Escude, J. Reionization of the Intergalactic Medium and the damping wing of the Gunn-Peterson trough. Astrophys. J. 501, 15–22 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Totani, T. Cosmological gamma-ray bursts and evolution of galaxies. Astrophys. J. 486, L71–L74 (1997)

    Article  ADS  Google Scholar 

  4. Ciardi, B. & Loeb, A. Expected number and flux distribution of gamma-ray burst afterglows with high redshifts. Astrophys. J. 540, 687–696 (2000)

    Article  ADS  Google Scholar 

  5. Andersen, M. I. et al. VLT identification of the optical afterglow of the gamma-ray burst GRB 000131 at z = 4.50. Astron. Astrophys. 364, L54–L61 (2000)

    ADS  Google Scholar 

  6. Cummings, J. et al. GRB050904: Swift-BAT detection of a probable burst. GCN Circ. 3910 (2005)

  7. Sakamoto, T. et al. GRB 050904 BAT refined analysis of complete data set. GCN Circ. 3938 (2005)

  8. Fox, D. B. & Cenko, S. B. GRB050904: P60 observations. GCN Circ. 3912 (2005)

  9. Haislip, J. et al. GRB 050904: SOAR/PROMPT observations. GCN Circ. 3913 (2005)

  10. Haislip, J. et al. GRB 050904: possible high-redshift GRB. GCN Circ. 3914 (2005)

  11. Antonelli, L. A. et al. GRB 050904: photometric redshift. GCN Circ. 3924 (2005)

  12. Kashikawa, N. et al. FOCAS: The Faint Object Camera and Spectrograph for the Subaru Telescope. Publ. Astron. Soc. Jpn. 54, 819–832 (2002)

    Article  ADS  Google Scholar 

  13. White, R. L., Becker, R. H., Fan, X. & Strauss, M. A. Probing the ionization state of the Universe at z > 6. Astron. J. 126, 1–14 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Gunn, J. E. & Peterson, B. A. On the density of neutral hydrogen in intergalactic space. Astrophys. J. 142, 1633–1641 (1965)

    Article  ADS  CAS  Google Scholar 

  15. Becker, R. H. et al. Evidence for reionization at z6: Detection of a Gunn-Peterson trough in a z = 6.28 quasar. Astron. J. 122, 2850–2857 (2001)

    Article  ADS  Google Scholar 

  16. Grevesse, N. & Sauval, A. J. Standard solar composition. Space Sci. Rev. 85, 161–174 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Silva, A. I. & Viegas, S. M. Physical conditions in quasi-stellar object absorbers from fine-structure absorption lines. Mon. Not. R. Astron. Soc. 329, 135–148 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Vreeswijk, P. M. et al. The host of GRB 030323 at z = 3.372: A very high column density DLA system with a low metallicity. Astron. Astrophys. 419, 927–940 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Chen, H.-W., Prochaska, J. X., Bloom, J. S. & Thompson, I. B. Echelle spectroscopy of a GRB afterglow at z = 3.969: A new probe of the interstellar and intergalactic media in the young Universe. Astrophys. J. Lett. (in the press); preprint at 〈http://arXiv/astro-ph/0508270 (2005).

  20. Berger, E. et al. Spectroscopy of GRB 050505 at z = 4.275: A logN(HI) = 22.1 DLA host galaxy and the nature of the progenitor. Astrophys. J. (submitted); preprint at 〈http://arXiv/astro-ph/0511498 (2005).

  21. Mirabal, N. et al. GRB 021004: A possible shell nebula around a Wolf-Rayet star gamma-ray burst progenitor. Astrophys. J. 595, 935–949 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Schaefer, B. E. et al. GRB 021004: A massive progenitor star surrounded by shells. Astrophys. J. 588, 387–399 (2003)

    Article  ADS  Google Scholar 

  23. Klose, S. et al. Probing a gamma-ray burst progenitor at a redshift of z = 2: A comprehensive observing campaign of the afterglow of GRB 030226. Astron. J. 128, 1942–1954 (2004)

    Article  ADS  CAS  Google Scholar 

  24. van Marle, A.-J., Langer, N. & Garcia-Segura, G. Constraints on gamma-ray burst and supernova progenitors through circumstellar absorption lines. Astron. Astrophys. (in the press); preprint at http://arXiv/astro-ph/0507659 (2005).

  25. Spitzer, L. Physical Processes in the Interstellar Medium 51 (Wiley-Interscience, New York, 1978)

    Google Scholar 

Download references

Acknowledgements

This work is based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. We are grateful for support by the observatory. N.K. acknowledges support by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Tokyo Tech COE-21 programme ‘Nanometer-scale Quantum Physics’. We thank S. Barthelmy for maintaining the GRB Coordinates Network, and the Swift team for providing rapid GRB localizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kawai.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, N., Kosugi, G., Aoki, K. et al. An optical spectrum of the afterglow of a γ-ray burst at a redshift of z = 6.295. Nature 440, 184–186 (2006). https://doi.org/10.1038/nature04498

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature04498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing