Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid

Abstract

Nitrous acid is a significant photochemical precursor of the hydroxyl radical1,2,3,4,5,6,7,8,9,10,11,12,13, the key oxidant in the degradation of most air pollutants in the troposphere. The sources of nitrous acid in the troposphere, however, are still poorly understood. Recent atmospheric measurements7,10,11,12,13,14,15,16,17 revealed a strongly enhanced formation of nitrous acid during daytime via unknown mechanisms. Here we expose humic acid films to nitrogen dioxide in an irradiated tubular gas flow reactor and find that reduction of nitrogen dioxide on light-activated humic acids is an important source of gaseous nitrous acid. Our findings indicate that soil and other surfaces containing humic acid exhibit an organic surface photochemistry that produces reductive surface species, which react selectively with nitrogen dioxide. The observed rate of nitrous acid formation could explain the recently observed high daytime concentrations of nitrous acid in the boundary layer, the photolysis of which accounts for up to 60 per cent of the integrated hydroxyl radical source strengths3,6,7,8,9,10,11,12,13. We suggest that this photo-induced nitrous acid production on humic acid could have a potentially significant impact on the chemistry of the lowermost troposphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conversion of NO 2 → HONO on 1 mg layers of humic acids initiated by visible light (400–700 nm).
Figure 2: Conversion of NO 2 → HONO on irradiated soil in presence of 17 p.p.b. NO 2 and 30% relative humidity.

Similar content being viewed by others

References

  1. Perner, D. & Platt, U. Detection of nitrous acid in the atmosphere by differential optical-absorption. Geophys. Res. Lett. 6, 917–920 (1979)

    Article  ADS  CAS  Google Scholar 

  2. Platt, U., Perner, D., Harris, G. W., Winer, A. M. & Pitts, J. N. Observations of nitrous-acid in an urban atmosphere by differential optical-absorption. Nature 285, 312–314 (1980)

    Article  ADS  CAS  Google Scholar 

  3. Harrison, R. M., Peak, J. D. & Collins, G. M. Tropospheric cycle of nitrous acid. J. Geophys. Res. 101, 14429–14439 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Harris, G. W. et al. Observations of nitrous acid in the Los Angeles atmosphere and implications for predictions of ozone-precursor relationships. Environ. Sci. Technol. 16, 414–419 (1982)

    Article  ADS  CAS  Google Scholar 

  5. Lammel, G. & Cape, J. N. Nitrous acid and nitrite in the atmosphere. Chem. Soc. Rev. 25, 361–369 (1996)

    Article  CAS  Google Scholar 

  6. Alicke, B., Platt, U. & Stutz, J. Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan. J. Geophys. Res. 107, 8196, doi:10.1029/2000JD000075 (2002)

    Article  Google Scholar 

  7. Zhou, X. L. et al. Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural site in New York State. J. Geophys. Res. 107, 4590, doi:10.1029/2001JD001539 (2002)

    Google Scholar 

  8. Alicke, B. et al. OH formation by HONO photolysis during the BERLIOZ experiment. J. Geophys. Res. 108, 8247, doi:10.1029/2001JD000579 (2003)

    Article  Google Scholar 

  9. Aumont, B., Chervier, F. & Laval, S. Contribution of HONO sources to the NOx/HOx/O3 chemistry in the polluted boundary layer. Atmos. Environ. 37, 487–498 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Vogel, B., Vogel, H., Kleffmann, J. & Kurtenbach, R. Measured and simulated vertical profiles of nitrous acid—Part II. Model simulations and indications for a photolytic source. Atmos. Environ. 37, 2957–2966 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Ren, X. R. et al. OH and HO2 chemistry in the urban atmosphere of New York City. Atmos. Environ. 37, 3639–3651 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Kleffmann, J. et al. Daytime formation of nitrous acid: A major source of OH radicals in a forest. Geophys. Res. Lett. 32, 05818, doi:10.1029/2005GL022524 (2005)

    Article  ADS  Google Scholar 

  13. Acker, K. et al. Strong daytime production of OH from HNO2 at a rural mountain site. Geophys. Res. Lett. 33, 02809, doi:10.1029/2005GL024643 (2006)

    Article  ADS  Google Scholar 

  14. Kleffmann, J. et al. Measured and simulated vertical profiles of nitrous acid—Part I: Field measurements. Atmos. Environ. 37, 2949–2955 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Zhou, X. L. et al. Nitric acid photolysis on surfaces in low-NOx environments: Significant atmospheric implications. Geophys. Res. Lett. 30, 2217, doi:10.1029/2003GL018620 (2003)

    ADS  Google Scholar 

  16. Staffelbach, T., Neftel, A. & Horowitz, L. W. Photochemical oxidant formation over southern Switzerland. 2. Model results. J. Geophys. Res. 102, 23363–23373 (1997)

    Article  ADS  CAS  Google Scholar 

  17. Honrath, R. E. et al. Vertical fluxes of NOx, HONO, and HNO3 above the snowpack at Summit, Greenland. Atmos. Environ. 36, 2629–2640 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D. & Ramazan, K. A. The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism. Phys. Chem. Chem. Phys. 5, 223–242 (2003)

    Article  CAS  Google Scholar 

  19. Krivacsy, Z. et al. Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis. Atmos. Environ. 34, 4273–4281 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Janzen, H. H. Carbon cycling in earth systems - a soil science perspective. Agric. Ecosyst. Environ. 104, 399–417 (2004)

    Article  CAS  Google Scholar 

  21. George, C., Strekowski, R. S., Kleffmann, J., Stemmler, K. & Ammann, M. Photoenhanced uptake of gaseous NO2 on solid organic compounds: A photochemical source of HONO? Faraday Discuss. 130, 195–210 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Ramazan, K. A., Syomin, D. & Finlayson-Pitts, B. J. The photochemical production of HONO during the heterogeneous hydrolysis of NO2 . Phys. Chem. Chem. Phys. 6, 3836–3843 (2004)

    Article  CAS  Google Scholar 

  23. Blough, N. V. in The Sea surface and global change (eds Lyss, P. S. & Duce, P. A.) 383–425 (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  24. Ammann, M., Rössler, E., Strekowski, R. & George, C. Uptake of NO2 on aqueous solutions containing phenoxy type compounds - Implication for HONO formation in the atmosphere. Phys. Chem. Chem. Phys. 7, 2513–2518 (2005)

    Article  CAS  Google Scholar 

  25. Venterea, R. T. & Rolston, D. E. Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Glob. Change Biol. 6, 303–316 (2000)

    Article  ADS  Google Scholar 

  26. Stevenson, F., Harrison, R. M., Wetselaar, R. & Leeper, R. A. Nitrosation of soil organic matter. 3. Nature of gases produced by reaction of nitrite with lignins, humic substances, and phenolic constituents under neutral and slightly acidic conditions. Soil Sci. Soc. Am. 34, 430–435 (1970)

    Article  CAS  Google Scholar 

  27. Staffelbach, T. et al. Photochemical oxidant formation over southern Switzerland. 1. Results from summer 1994. J. Geophys. Res. 102, 23345–23362 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Atkinson, R. & Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos. Environ. 37, 197–219 (2003)

    Article  ADS  Google Scholar 

  29. Kleffmann, J., Heland, J., Kurtenbach, R., Lörzer, J. C. & Wiesen, P. A new instrument (LOPAP) for the detection of nitrous acid (HONO). Environ. Sci. Pollut. Res. 9, 48–54 (2002)

    Article  Google Scholar 

  30. Zepp, R. G., Faust, B. C. & Hoigne, J. Hydroxyl radical formation in aqueous reactions of iron(II) with hydrogen peroxide—the photo-fenton reaction. Environ. Sci. Technol. 26, 313–319 (1992)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Abd El Aal, S. Canonica, M. Birrer, J. Dommen, A. Prêvot, L. Urech and I. Alxneit for discussions or technical support. K.S. thanks the Swiss National Science Foundation for support. C.G. acknowledges the grant by Primequal2 for the project SHONO and the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Stemmler.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

This figure compares the photoreactivity of humic acids of different origin towards NO2. Shown are data for humic acids originating from peat, soil, or lignite-coal, which are all reactive towards NO2 and a reference experiment on uncoated glass surface under the same experimental conditions which shows no measurable reactivity. (PDF 38 kb)

Supplementary Figure 2

This figure shows the spectral irradiances of the three light sources used in the present study and compares them with the solar spectral irradiance at the earth surface. (PDF 54 kb)

Supplementary Figure 3

This figure compares the photo-formation of gaseous H2O2 and HONO on an Aldrich Humic Acid surface under UV-A irradiation. While only minor amounts of H2O2 are formed, a substantial amount of HONO is produced on this surface. (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stemmler, K., Ammann, M., Donders, C. et al. Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 440, 195–198 (2006). https://doi.org/10.1038/nature04603

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature04603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing