Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kruppel-like factor 2 regulates thymocyte and T-cell migration

Abstract

Mammalian Kruppel-like transcription factors are implicated in regulating terminal differentiation of several tissue types1,2,3. Deficiency in Kruppel-like factor (KLF) 2 (also known as LKLF) leads to a massive loss of the peripheral T-cell pool4, suggesting KLF2 regulates T-cell quiescence and survival4,5,6,7. Here we show, however, that KLF2 is essential for T-cell trafficking. KLF2-deficient (Klf2-/-) thymocytes show impaired expression of several receptors required for thymocyte emigration and peripheral trafficking, including the sphingosine-1-phosphate (S1P) receptor S1P1, CD62L and β7 integrin. Furthermore, KLF2 both binds and transactivates the promoter for S1P1—a receptor that is critical for thymocyte egress and recirculation through peripheral lymphoid organs. Our findings suggest that KLF2 serves to license mature T cells for trafficking from the thymus and recirculation through secondary lymphoid tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Klf2 -/- T cells develop but do not populate the periphery in fetal liver chimaeras.
Figure 2: Klf2 -/- T cells survive but show deregulated trafficking following adoptive transfer.
Figure 3: KLF2 is required for thymocyte expression of critical trafficking molecules.
Figure 4: KLF2 transactivates the S1P 1 promoter.

Similar content being viewed by others

References

  1. Dang, D. T., Pevsner, J. & Yang, V. W. The biology of the mammalian Kruppel-like family of transcription factors. Int. J. Biochem. Cell Biol. 32, 1103–1121 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaczynski, J., Cook, T. & Urrutia, R. Sp1- and Kruppel-like transcription factors. Genome Biol. 4, 206 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Turner, J. & Crossley, M. Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem. Sci. 24, 236–240 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Kuo, C. T., Veselits, M. L. & Leiden, J. M. LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Kuo, C. T. & Leiden, J. M. Transcriptional regulation of T lymphocyte development and function. Annu. Rev. Immunol. 17, 149–187 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Buckley, A. F., Kuo, C. T. & Leiden, J. M. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway. Nature Immunol. 2, 698–704 (2001)

    Article  CAS  Google Scholar 

  7. Di Santo, J. P. Lung Kruppel-like factor: a quintessential player in T cell quiescence. Nature Immunol. 2, 667–668 (2001)

    Article  CAS  Google Scholar 

  8. Anderson, K. P., Kern, C. B., Crable, S. C. & Lingrel, J. B. Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Kruppel-like factor: identification of a new multigene family. Mol. Cell. Biol. 15, 5957–5965 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wani, M. A., Means, R. T. Jr & Lingrel, J. B. Loss of LKLF function results in embryonic lethality in mice. Transgenic Res. 7, 229–238 (1998)

    Article  CAS  PubMed  Google Scholar 

  10. Wani, M. A., Wert, S. E. & Lingrel, J. B. Lung Kruppel-like factor, a zinc finger transcription factor, is essential for normal lung development. J. Biol. Chem. 274, 21180–21185 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Kuo, C. T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11, 2996–3006 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schober, S. L. et al. Expression of the transcription factor lung Kruppel-like factor is regulated by cytokines and correlates with survival of memory T cells in vitro and in vivo. J. Immunol. 163, 3662–3667 (1999)

    CAS  PubMed  Google Scholar 

  13. Grayson, J. M., Murali-Krishna, K., Altman, J. D. & Ahmed, R. Gene expression in antigen-specific CD8+ T cells during viral infection. J. Immunol. 166, 795–799 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Wu, J. & Lingrel, J. B. Kruppel-like factor 2, a novel immediate-early transcriptional factor, regulates IL-2 expression in T lymphocyte activation. J. Immunol. 175, 3060–3066 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Wu, J. & Lingrel, J. B. KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1. Oncogene 23, 8088–8096 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Haaland, R. E., Yu, W. & Rice, A. P. Identification of LKLF-regulated genes in quiescent CD4+ T lymphocytes. Mol. Immunol. 42, 627–641 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Mick, V. E., Starr, T. K., McCaughtry, T. M., McNeil, L. K. & Hogquist, K. A. The regulated expression of a diverse set of genes during thymocyte positive selection in vivo. J. Immunol. 173, 5434–5444 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Gabor, M. J., Godfrey, D. I. & Scollay, R. Recent thymic emigrants are distinct from most medullary thymocytes. Eur. J. Immunol. 27, 2010–2015 (1997)

    Article  CAS  PubMed  Google Scholar 

  19. Feng, C. et al. A potential role for CD69 in thymocyte emigration. Int. Immunol. 14, 535–544 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Boursalian, T. E., Golob, J., Soper, D. M., Cooper, C. J. & Fink, P. J. Continued maturation of thymic emigrants in the periphery. Nature Immunol. 5, 418–425 (2004)

    Article  CAS  Google Scholar 

  21. Arbones, M. L. et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1, 247–260 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. Wagner, N. et al. Critical role for β7 integrins in formation of the gut-associated lymphoid tissue. Nature 382, 366–370 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Wagner, N. et al. L-selectin and β7 integrin synergistically mediate lymphocyte migration to mesenteric lymph nodes. Eur. J. Immunol. 28, 3832–3839 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Cyster, J. G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2004)

    Article  Google Scholar 

  25. Nakayama, T. et al. The generation of mature, single-positive thymocytes in vivo is dysregulated by CD69 blockade or overexpression. J. Immunol. 168, 87–94 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Shiow, L. R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Allende, M. L., Dreier, J. L., Mandala, S. & Proia, R. L. Expression of the sphingosine-1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 279, 15396–15401 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Lo, C. G., Xu, Y., Proia, R. L. & Cyster, J. G. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J. Exp. Med. 201, 291–301 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Cyster for generous provision of CCL19–Fc fusion protein, Y. Li for developing S1P1 RT–PCR assays, M. Jenkins and M. Mescher for critical input on the manuscript, and members of the ‘Jamequist’ laboratory for helpful discussions. This work was supported by the NIH (an immunology pre-doctoral training grant to B.T.E., a grant to K.A.H., and a grant to S.C.J.), the American Cancer Society (a grant to S.C.J.), and the Cancer Research Institute (post-doctoral fellowship to C.M.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kristin A. Hogquist or Stephen C. Jameson.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods with eight references, details of grant support and Supplementary Figures S1–S4 with legends. Supplementary Figure S1 details the normal in vitro survival of KLF2-/- mature thymocytes. Supplementary Figure S2 shows aberrant trafficking and phenotype of KLF2-/- SP thymocytes after adoptive transfer. Supplementary Figure S3 details real-time PCR analysis of gene expression in KLF2-/- and KLF2+/- DP and CD4 SP thymocytes. Supplementary Figure S4 shows the sequence of human and mouse S1P1 promoters, showing the CACCC sequence and the location of primers used for the CHiP assay. (PDF 453 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, C., Endrizzi, B., Wu, J. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006). https://doi.org/10.1038/nature04882

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature04882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing