Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Purine-mediated signalling triggers eye development

Abstract

A conserved network of eye field transcription factors (EFTFs) underlies the development of the eye in vertebrates and invertebrates1. To direct eye development, Pax6, a key gene in this network2,3, interacts with genes encoding other EFTFs such as Rx1 and Six3 (refs 4–6). However, the mechanisms that control expression of the EFTFs remain unclear7. Here we show that purine-mediated signalling triggers both EFTF expression and eye development in Xenopus laevis. Overexpression of ectonucleoside triphosphate diphosphohydrolase 2 (E-NTPDase2)8, an ectoenzyme that converts ATP to ADP9, caused ectopic eye-like structures, with occasional complete duplication of the eye, and increased expression of Pax6, Rx1 and Six3. In contrast, downregulation of endogenous E-NTPDase2 decreased Rx1 and Pax6 expression. E-NTPDase2 therefore acts upstream of these EFTFs. To test whether ADP (the product of E-NTPDase2) might act to trigger eye development through P2Y1 receptors, selective in Xenopus for ADP10,11, we simultaneously knocked down expression of the genes encoding E-NTPDase2 and the P2Y1 receptor. This could prevent the expression of Rx1 and Pax6 and eye formation completely. We next measured ATP release12,13,14 in the presumptive eye field, demonstrating a transient release of ATP at a time that could plausibly trigger (once converted to ADP) expression of the EFTFs. This surprising role for transient purine-mediated signalling in eye development may be widely conserved, because alterations to the locus of E-NTPDase2 on human chromosome 9 cause severe head and eye defects, including microphthalmia15,16,17,18. Our results suggest a new mechanism for the initiation of eye development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E-NTPDase2 induces formation of ectopic eye-like structures.
Figure 2: Mis-expression of E-NTPDase2 alters EFTF expression.
Figure 3: Both E-NTPDase2 and P2Y1 receptors are necessary for EFTF expression.
Figure 4: E-NTPDase2 and P2Y1 receptors synergistically affect eye development.
Figure 5: Pax6 overexpression rescues loss of eye phenotype induced by knockdown of E-NTPDase2 and P2Y1.
Figure 6: All components of purinergic signalling are present for the initiation of eye development.

Similar content being viewed by others

References

  1. Chow, R. & Lang, R. Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol. 17, 255–296 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Hill, R. E. et al. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Quiring, R., Walldorf, U., Kloter, U. & Gehring, W. J. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265, 785–789 (1996)

    Article  ADS  Google Scholar 

  4. Zuber, M., Gestri, G., Viczian, A., Barsacchi, G. & Harris, W. A. Specification of the vertebrate eye by a network of eye field transcription factors. Development 130, 5155–5167 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Mathers, P., Grinberg, A., Mahon, K. & Jamrich, M. The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607 (1997)

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Loosli, F., Winkler, S. & Wittbrodt, J. Six3 overexpression initiates the formation of ectopic retina. Genes Dev. 13, 649–654 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Esteve, P. & Bovolenta, P. Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr. Opin. Neurobiol. 16, 13–19 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Massé, K., Eason, R., Bhamra, S., Dale, N. & Jones, E. A. Comparative genomic and expression analysis of the conserved NTPDase gene family in Xenopus . Genomics 87, 366–381 (2006)

    Article  PubMed  Google Scholar 

  9. Zimmermann, H. Extracellular metabolism of ATP and other nucleotides. Naunyn-Schmiedebergs Arch. Pharmacol. 362, 299–309 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Brown, P. & Dale, N. Modulation of K+ currents in Xenopus spinal neurons by p2y receptors: a role for ATP and ADP in motor pattern generation. J. Physiol. (Lond.) 540, 843–850 (2002)

    Article  CAS  Google Scholar 

  11. Cheng, A. W. et al. cDNA encodes Xenopus P2Y(1) nucleotide receptor: expression at the neuromuscular junctions. Neuroreport 14, 351–357 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Llaudet, E., Hatz, S., Droniou, M. & Dale, N. Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal. Chem. 77, 3267–3273 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Pearson, R. A., Dale, N., Llaudet, E. & Mobbs, P. ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46, 731–744 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Gourine, A. V., Llaudet, E., Dale, N. & Spyer, K. M. ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436, 108–111 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Neas, K. R. et al. Three patients with terminal deletions within the subtelomeric region of chromosome 9q. Am. J. Med. Genet. A 132, 425–430 (2005)

    Article  Google Scholar 

  16. Allderdice, P. W. et al. Duplication 9q34 syndrome. Am. J. Hum. Genet. 35, 1005–1019 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hampshire, D. J. et al. MORM syndrome (mental retardation, truncal obesity, retinal dystrophy and micropenis), a new autosomal recessive disorder, links to 9q34. Eur. J. Hum. Genet. 14, 543–548 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Yatsenko, S. A. et al. Deletion 9q34.3 syndrome: genotype–phenotype correlations and an extended deletion in a patient with features of Opitz C trigonocephaly. J. Med. Genet. 42, 328–335 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chow, R., Altmann, C., Lang, R. & Hemmati-Brivanlou, A. Pax6 induces ectopic eyes in vertebrates. Development 126, 4213–4222 (1999)

    CAS  PubMed  Google Scholar 

  20. Li, H., Tierney, C., Wen, L., Wu, J. Y. & Rao, Y. A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development 124, 603–615 (1997)

    CAS  PubMed  Google Scholar 

  21. Martinez-Morales, J. R., Signore, M., Acampora, D., Simeone, A. & Bovolenta, P. Otx genes are required for tissue specification in the developing eye. Development 128, 2019–2030 (2001)

    CAS  PubMed  Google Scholar 

  22. Collignon, J. et al. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2 . Development 122, 509–520 (1996)

    CAS  PubMed  Google Scholar 

  23. Glaser, T. et al. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nature Genet. 7, 463–471 (2004)

    Article  Google Scholar 

  24. Stoykova, A., Fritsch, R., Walther, C. & Gruss, P. Forebrain patterning defects in Small eye mutant mice. Development 122, 3453–3465 (1996)

    CAS  PubMed  Google Scholar 

  25. Mitchell, T. N. et al. Polymicrogyria and absence of pineal gland due to PAX6 mutation. Ann. Neurol. 53, 658–663 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Braun, N. et al. Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur. J. Neurosci. 17, 1355–1364 (2003)

    Article  PubMed  Google Scholar 

  27. Mishra, S. K. et al. Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133, 675–684 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Nieuwkoop, P. D & Faber, J. Normal Table of Xenopus laevis (Daudin). (Garland, New York, 1994.

  29. Bourguignon, C., Li, J. & Papalopulu, N. XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm. Development 125, 4889–4900 (1998)

    CAS  PubMed  Google Scholar 

  30. Barnett, M. W., Old, R. W. & Jones, E. A. Neural induction and patterning by fibroblast growth factor, notochord and somite tissue in Xenopus . Dev. Growth Differ. 40, 47–57 (1998)

    Article  CAS  PubMed  Google Scholar 

  31. Harland, R. In situ hybridisation: an improved wholemount method for Xenopus embryos. Methods Cell Biol. 36, 685–695 (1991)

    Article  CAS  PubMed  Google Scholar 

  32. Hirsch, N. & Harris, W. A. Xenopus Pax-6 and retinal development. J. Neurobiol. 32, 45–61 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. Casarosa, S., Andreazzoli, M., Simeone, A. & Barsacchi, G. Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development. Mech. Dev. 61, 187–198 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Pannese, M. et al. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 12, 707–720 (1995)

    Google Scholar 

  35. Haldin, C. E., Nijjar, S., Massé, K., Barnett, M. W. & Jones, E. A. Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene. Int. J. Dev. Biol. 47, 253–262 (2003)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Jarrett for the maintenance of the frogs and E. Llaudet for the production of biosensors. We thank M. Andreazzoli, G. Guidetti, W. Harris, M. Hodgkin, H. Isaacs, A. Philpott, D. Sakaguchi, C. Smith and P. Stanfield for constructs and antibodies used in this work. This work was supported by the Wellcome Trust.

Author Contributions K.M. performed all molecular biology. K.M. and E.A.J. performed the mis-expression studies and phenotype analysis. E.A.J. performed all microinjections and dissection. S.B. performed in situ hybridization and sectioning, R.E. performed enzymatic activity assays, N.D. performed the ATP biosensor studies and the statistical analysis with K.M. E.A.J. and N.D. supervised the research project. K.M., N.D. and E.A.J. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Dale or Elizabeth A. Jones.

Ethics declarations

Competing interests

N.D. is a director and shareholder in Sarissa Biomedical Ltd., a company that makes biosensors similar to those used in this study.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-5 and Supplementary Figures 1-9 with Legends. (PDF 2602 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massé, K., Bhamra, S., Eason, R. et al. Purine-mediated signalling triggers eye development. Nature 449, 1058–1062 (2007). https://doi.org/10.1038/nature06189

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature06189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing