Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α

Abstract

Ischaemia of the heart, brain and limbs is a leading cause of morbidity and mortality worldwide. Hypoxia stimulates the secretion of vascular endothelial growth factor (VEGF) and other angiogenic factors, leading to neovascularization and protection against ischaemic injury1. Here we show that the transcriptional coactivator PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α), a potent metabolic sensor and regulator2, is induced by a lack of nutrients and oxygen, and PGC-1α powerfully regulates VEGF expression and angiogenesis in cultured muscle cells and skeletal muscle in vivo. PGC-1α-/- mice show a striking failure to reconstitute blood flow in a normal manner to the limb after an ischaemic insult, whereas transgenic expression of PGC-1α in skeletal muscle is protective. Surprisingly, the induction of VEGF by PGC-1α does not involve the canonical hypoxia response pathway and hypoxia inducible factor (HIF). Instead, PGC-1α coactivates the orphan nuclear receptor ERR-α (oestrogen-related receptor-α) on conserved binding sites found in the promoter and in a cluster within the first intron of the VEGF gene. Thus, PGC-1α and ERR-α, major regulators of mitochondrial function in response to exercise and other stimuli, also control a novel angiogenic pathway that delivers needed oxygen and substrates. PGC-1α may provide a novel therapeutic target for treating ischaemic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PGC-1α regulates VEGF in response to deprivation of nutrients and oxygen.
Figure 2: PGC-1α regulates angiogenesis and blood flow recovery after ischaemia in vivo.
Figure 3: PGC-1α is induced by nutrient/oxygen deprivation and regulates VEGF independently of the HIF pathway.
Figure 4: PGC-1α regulates expression of VEGF through coactivation of ERR-α.

Similar content being viewed by others

References

  1. Carmeliet, P. Angiogenesis in health and disease. Nature Med. 9, 653–660 (2003)

    Article  CAS  Google Scholar 

  2. Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005)

    Article  Google Scholar 

  3. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999)

    Article  CAS  Google Scholar 

  4. St-Pierre, J. et al. Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J. Biol. Chem. 278, 26597–26603 (2003)

    Article  CAS  Google Scholar 

  5. Semenza, G. L. Angiogenesis in ischemic and neoplastic disorders. Annu. Rev. Med. 54, 17–28 (2003)

    Article  CAS  Google Scholar 

  6. Jain, R. K. Molecular regulation of vessel maturation. Nature Med. 9, 685–693 (2003)

    Article  CAS  Google Scholar 

  7. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Couffinhal, T. et al. Mouse model of angiogenesis. Am. J. Pathol. 152, 1667–1679 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003)

    Article  CAS  Google Scholar 

  10. Wood, S. M., Gleadle, J. M., Pugh, C. W., Hankinson, O. & Ratcliffe, P. J. The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J. Biol. Chem. 271, 15117–15123 (1996)

    Article  CAS  Google Scholar 

  11. Kelly, D. P. & Scarpulla, R. C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 357–368 (2004)

    Article  CAS  Google Scholar 

  12. Kressler, D., Schreiber, S. N., Knutti, D. & Kralli, A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J. Biol. Chem. 277, 13918–13925 (2002)

    Article  CAS  Google Scholar 

  13. Schreiber, S. N., Knutti, D., Brogli, K., Uhlmann, T. & Kralli, A. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J. Biol. Chem. 278, 9013–9018 (2003)

    Article  CAS  Google Scholar 

  14. Huss, J. M., Kopp, R. P. & Kelly, D. P. Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α. J. Biol. Chem. 277, 40265–40274 (2002)

    Article  CAS  Google Scholar 

  15. Huss, J. M., Torra, I. P., Staels, B., Giguere, V. & Kelly, D. P. Estrogen-related receptor α directs peroxisome proliferator-activated receptor α signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol. 24, 9079–9091 (2004)

    Article  CAS  Google Scholar 

  16. Mootha, V. K. et al. Errα and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl Acad. Sci. USA 101, 6570–6575 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Sladek, R., Bader, J. A. & Giguere, V. The orphan nuclear receptor estrogen-related receptor α is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol. Cell. Biol. 17, 5400–5409 (1997)

    Article  CAS  Google Scholar 

  18. Shaw, R. J. Glucose metabolism and cancer. Curr. Opin. Cell Biol. 18, 598–608 (2006)

    Article  CAS  Google Scholar 

  19. Carmeliet, P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nature Med. 6, 1102–1103 (2000)

    Article  CAS  Google Scholar 

  20. Henry, T. D. et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 107, 1359–1365 (2003)

    Article  CAS  Google Scholar 

  21. Pajusola, K. et al. Stabilized HIF-1α is superior to VEGF for angiogenesis in skeletal muscle via adeno-associated virus gene transfer. FASEB J. 19, 1365–1367 (2005)

    Article  CAS  Google Scholar 

  22. Arany, Z. et al. The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 5, 35–46 (2007)

    Article  CAS  Google Scholar 

  23. Megeney, L. A., Kablar, B., Garrett, K., Anderson, J. E. & Rudnicki, M. A. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 10, 1173–1183 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Smith for assistance with graphics. This work was supported by grants from the National Institutes of Health (Z.A. and B.M.S.), the Wenner–Gren Foundation (J.L.R.) and the Leducq Foundation (A.R. and B.M.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zoltan Arany or Bruce M. Spiegelman.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures S1-S22 with Legends. (PDF 1059 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arany, Z., Foo, SY., Ma, Y. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature 451, 1008–1012 (2008). https://doi.org/10.1038/nature06613

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature06613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing