Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic viruses: a new opportunity to understand and prevent viral disease

Abstract

Rapid progress in DNA synthesis and sequencing is spearheading the deliberate, large-scale genetic alteration of organisms. These new advances in DNA manipulation have been extended to the level of whole-genome synthesis, as evident from the synthesis of poliovirus, from the resurrection of the extinct 1918 strain of influenza virus and of human endogenous retroviruses and from the restructuring of the phage T7 genome. The largest DNA synthesized so far is the 582,970 base pair genome of Mycoplasma genitalium, although, as yet, this synthetic DNA has not been 'booted' to life. As genome synthesis is independent of a natural template, it allows modification of the structure and function of a virus's genetic information to an extent that was hitherto impossible. The common goal of this new strategy is to further our understanding of an organism's properties, particularly its pathogenic armory if it causes disease in humans, and to make use of this new information to protect from, or treat, human viral disease. Although only a few applications of virus synthesis have been described as yet, key recent findings have been the resurrection of the 1918 influenza virus and the generation of codon- and codon pair–deoptimized polioviruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of lethality in mice infected with select 1918 and modern human H1N1 influenza A (Tx/91) reassortant viruses.
Figure 2: The poliovirus genome and the effect of codon bias.
Figure 3: The codon pair bias (CPB) score for each of the 14,795 annotated human genes was calculated4.

Similar content being viewed by others

References

  1. Keasling, J. The promise of synthetic biology. The Bridge 35, 18–21 (2005).

    Google Scholar 

  2. Chan, L.Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005.0018 (2005).

  3. Burns, C.C. et al. Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J. Virol. 80, 3259–3272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coleman, J.R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mueller, S., Papamichail, D., Coleman, J.R., Skiena, S. & Wimmer, E. Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J. Virol. 80, 9687–9696 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wöhler, F. Ueber die künstliche Bildung des Harnstoffs. Ann. Phys. 12, 253–256 (1828) (in German).

    Article  Google Scholar 

  7. Kinne-Saffran, E. & Kinne, R.K. Vitalism and synthesis of urea. From Friedrich Wohler to Hans A. Krebs. Am. J. Nephrol. 19, 290–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Miescher, F. Ueber der chemische Zusammensetzung der Eiterzellen. Med.-Chem. Unters. 4, 441–460 (1871) (in German).

    Google Scholar 

  9. Watson, J.D. & Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, D.M. & Todd, A.R. in The Nucleic Acids Vol. 1 (eds. Chargaff, E. & Davidson, J.N.) 409–430 (Academic, New York, 1955).

    Google Scholar 

  11. Agarwal, K.L. et al. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature 227, 27–34 (1970).

    Article  CAS  PubMed  Google Scholar 

  12. Khorana, H.G. Total synthesis of a gene. Science 203, 614–625 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Caruthers, M.H. Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Stewart, L. & Burgin, A.B. Whole gene synthesis: a gene-o-matic future. Front. Drug Des. Disc. 1, 297–341 (2005).

    Article  CAS  Google Scholar 

  15. Sanghvi, Y. A roadmap to the assembly of synthetic DNA from raw materials. in Working Papers for Synthetic Genomics: Risks and Benefits for Science and Society (eds. Garfinkel, M.S., Endy, D., Epstein, G.L. & Friedman, R.M.) 17–33 (2007).

    Google Scholar 

  16. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M. & Heyneker, H.L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Pan, W. et al. Vaccine candidate MSP-1 from Plasmodium falciparum: a redesigned 4917 bp polynucleotide enables synthesis and isolation of full-length protein from Escherichia coli and mammalian cells. Nucleic Acids Res. 27, 1094–1103 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cello, J., Paul, A.V. & Wimmer, E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Gibson, D.G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Holley, R.W. et al. Structure of a ribonucleic acid. Science 147, 1462–1465 (1965).

    Article  CAS  PubMed  Google Scholar 

  22. Penswick, J.R., Martin, R. & Dirheimer, G. Evidence supporting a revised sequence for yeast alanine tRNA. FEBS Lett. 50, 28–31 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. Shendure, J.A., Porreca, G.J. & Church, G.M. Overview of DNA sequencing strategies. in Current Protocols in Molecular Biology. (ed. Ausubel, F.M. et al.) Unit 7.1 (John Wiley and Sons, Hoboken, NJ, USA; 2008).

    Google Scholar 

  24. Maxam, A.M. & Gilbert, W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. The International Human Genome Mapping Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  28. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Wheeler, D.A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Pennisi, E. Personal genomics. Number of sequenced human genomes doubles. Science 322, 838 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Taniguchi, T., Palmieri, M. & Weissmann, C. Qβ DNA-containing hybrid plasmids giving rise to Qβ phage formation in the bacterial host. Nature 274, 223–228 (1978).

    Article  CAS  PubMed  Google Scholar 

  32. Weissmann, C., Weber, H., Taniguchi, T., Muller, W. & Meyer, F. Reversed genetics: a new approach to the elucidation of structure–function relationship. Ciba Found. Symp. 66, 47–61 (1979).

    CAS  Google Scholar 

  33. Racaniello, V.R. & Baltimore, D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214, 916–919 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. Schnell, M.J., Mebatsion, T. & Conzelmann, K.K. Infectious rabies viruses from cloned cDNA. EMBO J. 13, 4195–4203 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Collins, P.L. et al. Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc. Natl. Acad. Sci. USA 92, 11563–11567 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neumann, G. et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl. Acad. Sci. USA 96, 9345–9350 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fodor, E. et al. Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679–9682 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Takeuchi, K., Takeda, M. & Miyajima, N. Toward understanding the pathogenicity of wild-type measles virus by reverse genetics. Jpn. J. Infect. Dis. 55, 143–149 (2002).

    CAS  PubMed  Google Scholar 

  39. Neumann, G., Feldmann, H., Watanabe, S., Lukashevich, I. & Kawaoka, Y. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J. Virol. 76, 406–410 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Överby, A.K., Popov, V., Neve, E.P. & Pettersson, R.F. Generation and analysis of infectious virus-like particles of uukuniemi virus (bunyaviridae): a useful system for studying bunyaviral packaging and budding. J. Virol. 80, 10428–10435 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Komoto, S., Sasaki, J. & Taniguchi, K. Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc. Natl. Acad. Sci. USA 103, 4646–4651 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blight, K.J., Kolykhalov, A.A. & Rice, C.M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Taubenberger, J.K., Reid, A.H., Krafft, A.E., Bijwaard, K.E. & Fanning, T.G. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275, 1793–1796 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Reid, A.H., Fanning, T.G., Hultin, J.V. & Taubenberger, J.K. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl. Acad. Sci. USA 96, 1651–1656 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reid, A.H., Fanning, T.G., Janczewski, T.A. & Taubenberger, J.K. Characterization of the 1918 “Spanish” influenza virus neuraminidase gene. Proc. Natl. Acad. Sci. USA 97, 6785–6790 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Basler, C.F. et al. Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc. Natl. Acad. Sci. USA 98, 2746–2751 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reid, A.H., Fanning, T.G., Janczewski, T.A., McCall, S. & Taubenberger, J.K. Characterization of the 1918 “Spanish” influenza virus matrix gene segment. J. Virol. 76, 10717–10723 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reid, A.H., Fanning, T.G., Janczewski, T.A., Lourens, R.M. & Taubenberger, J.K. Novel origin of the 1918 pandemic influenza virus nucleoprotein gene. J. Virol. 78, 12462–12470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taubenberger, J.K. et al. Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Takehisa, J. et al. Generation of infectious molecular clones of simian immunodeficiency virus from fecal consensus sequences of wild chimpanzees. J. Virol. 81, 7463–7475 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, Y.N. & Bieniasz, P.D. Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog. 3, e10 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Becker, M.M. et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc. Natl. Acad. Sci. USA 105, 19944–19949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wimmer, E. The test-tube synthesis of a chemical called poliovirus. The simple synthesis of a virus has far-reaching societal implications. EMBO Rep. 7, S3–S9 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Jesus, N., Franco, D., Paul, A., Wimmer, E. & Cello, J. Mutation of a single conserved nucleotide between the cloverleaf and internal ribosome entry site attenuates poliovirus neurovirulence. J. Virol. 79, 14235–14243 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Toyoda, H., Yin, J., Mueller, S., Wimmer, E. & Cello, J. Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res. 67, 2857–2864 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. van der Werf, S., Bradley, J., Wimmer, E., Studier, F.W. & Dunn, J.J. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83, 2330–2334 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Molla, A., Paul, A.V. & Wimmer, E. Cell-free, de novo synthesis of poliovirus. Science 254, 1647–1651 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Jiang, P. et al. Evidence for emergence of diverse polioviruses from C-cluster coxsackie A viruses and implications for global poliovirus eradication. Proc. Natl. Acad. Sci. USA 104, 9457–9462 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Claverie, J.M. Viruses take center stage in cellular evolution. Genome Biol. 7, 110 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Villarreal, L.P. Are viruses alive? Sci. Am. 291, 100–105 (2004).

    Article  PubMed  Google Scholar 

  61. Ryan, F.P. Viruses as symbionts. Symbiosis 44, 11–21 (2007).

    CAS  Google Scholar 

  62. Koonin, E.V., Senkevich, T.G. & Dolja, V.V. Compelling reasons why viruses are relevant for the origin of cells. Nat. Rev. Microbiol. 7, 615 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Claverie, J.M. & Ogata, H. Ten good reasons not to exclude viruses from the evolutionary picture. Nat. Rev. Microbiol. 7, 615 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Kitamura, N. et al. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291, 547–553 (1981).

    Article  CAS  PubMed  Google Scholar 

  65. Racaniello, V.R. & Baltimore, D. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc. Natl. Acad. Sci. USA 78, 4887–4891 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith, H.O., Hutchison, C.A., III, Pfannkoch, C. & Venter, J.C. Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 100, 15440–15445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taubenberger, J.K. & Morens, D.M. 1918 Influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Taubenberger, J.K., Morens, D.M. & Fauci, A.S. The next influenza pandemic: can it be predicted? J. Am. Med. Assoc. 297, 2025–2027 (2007).

    Article  CAS  Google Scholar 

  69. Taubenberger, J.K., Hultin, J.V. & Morens, D.M. Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antivir. Ther. 12, 581–591 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pekosz, A., He, B. & Lamb, R.A. Reverse genetics of negative-strand RNA viruses: closing the circle. Proc. Natl. Acad. Sci. USA 96, 8804–8806 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoffmann, E., Neumann, G., Hobom, G., Webster, R.G. & Kawaoka, Y. “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267, 310–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Tumpey, T.M. et al. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. USA 99, 13849–13854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kash, J.C. et al. Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J. Virol. 78, 9499–9511 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kobasa, D. et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431, 703–707 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Kash, J.C. et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578–581 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pappas, C. et al. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc. Natl. Acad. Sci. USA 105, 3064–3069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tumpey, T.M. et al. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. USA 101, 3166–3171 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tumpey, T.M. et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 79, 14933–14944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Taubenberger, J.K. & Morens, D.M. The pathology of influenza virus infections. Annu. Rev. Pathol. 3, 499–522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tumpey, T.M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Naffakh, N., Massin, P., Escriou, N., Crescenzo-Chaigne, B. & van der Werf, S. Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J. Gen. Virol. 81, 1283–1291 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Tumpey, T.M. et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Stevens, J. et al. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Ryan, F.P. Human endogenous retroviruses in health and disease: a symbiotic perspective. J. R. Soc. Med. 97, 560–565 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bannert, N. & Kurth, R. Retroelements and the human genome: new perspectives on an old relation. Proc. Natl. Acad. Sci. USA 101, S14572–S14579 (2004).

    Article  Google Scholar 

  86. Dewannieux, M. et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 16, 1548–1556 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Enserink, M. Viral Fossil brought back to life. Science NOW 1101, 4 (2006).

    Google Scholar 

  88. Keele, B.F. et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313, 523–526 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Baltimore, D. Expression of animal virus genomes. Bacteriol. Rev. 35, 235–241 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wimmer, E., Hellen, C.U. & Cao, X. Genetics of poliovirus. Annu. Rev. Genet. 27, 353–436 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Holland, J. et al. Rapid evolution of RNA genomes. Science 215, 1577–1585 (1982).

    Article  CAS  PubMed  Google Scholar 

  93. Eigen, M. Viral quasispecies. Sci. Am. 269, 42–49 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Zolotukhin, S., Potter, M., Hauswirth, W.W., Guy, J. & Muzyczka, N. A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gromeier, M., Wimmer, E. & Gorbalenya, A.E. Genetics, pathogenesis and evolution of picornaviruses. in Origin and Evolution of Viruses (eds. Domingo, E., Webster, R.G. & Holland, J.J.) 287–343 (Academic, New York, 1999).

    Chapter  Google Scholar 

  96. Porter, D.C. et al. Demonstration of the specificity of poliovirus encapsidation using a novel replicon which encodes enzymatically active firefly luciferase. Virology 243, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Kuge, S., Saito, I. & Nomoto, A. Primary structure of poliovirus defective-interfering particle genomes and possible generation mechanisms of the particles. J. Mol. Biol. 192, 473–487 (1986).

    Article  CAS  PubMed  Google Scholar 

  98. Gutman, G.A. & Hatfield, G.W. Nonrandom utilization of codon pairs in Escherichia coli. Proc. Natl. Acad. Sci. USA 86, 3699–3703 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moura, G. et al. Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PLoS ONE 2, e847 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. McKnight, K.L. & Lemon, S.M. Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J. Virol. 70, 1941–1952 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Goodfellow, I. et al. Identification of a cis-acting replication element within the poliovirus coding region. J. Virol. 74, 4590–4600 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fowler, M., Beck, K., Brant, J., Opdyke, W. & Roberts, D. Refactoring: Improving the Design of Existing Code (Addison-Wesley, Boston, 1999).

    Google Scholar 

  103. Dunn, J.J. & Studier, F.W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166, 477–535 (1983).

    Article  CAS  PubMed  Google Scholar 

  104. Knight, T.F. Engineering novel life. Mol. Syst. Biol. 1, 2005 0020 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Atlas, R. et al. Statement on the consideration of biodefence and biosecurity. Nature 421, 771 (2003).

    Article  PubMed  CAS  Google Scholar 

  106. Atlas, R. et al. Statement on scientific publication and security. Science 299, 1149 (2003).

    Article  PubMed  Google Scholar 

  107. National Research Council. Biotechnology in an Age of Terrorism (The National Academies Press, Washington, DC, 2004).

  108. Bügl, H. et al. DNA synthesis and biological security. Nat. Biotechnol. 25, 627–629 (2007).

    Article  PubMed  CAS  Google Scholar 

  109. Garfinkel, M., Endy, D., Epstein, G. & Friedman, R. Synthetic genomics: options for governance. Biosecur. Bioterror. 5, 359–362 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to our colleagues who have participated in the work described here and who have in part edited the manuscript, particularly A. Paul and B. Futcher, and we thank J. Shendure, L. Steward and A.B. Burgin for information provided. The work described here was supported partially by US National Institutes of Health (NIH) grants AI075219 and AI15122 and contract N65236 from the US Defense Advanced Research Project Agency to E.W.; and partially by the intramural research program of the NIH and the National Institute of Allergies and Infectious Diseases (NIAID). The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckard Wimmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimmer, E., Mueller, S., Tumpey, T. et al. Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat Biotechnol 27, 1163–1172 (2009). https://doi.org/10.1038/nbt.1593

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt.1593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing