Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of influenza A nucleoprotein as an antiviral target

Abstract

Influenza A remains a significant public health challenge because of the emergence of antigenically shifted or highly virulent strains1,2,3,4,5. Antiviral resistance to available drugs such as adamantanes or neuraminidase inhibitors has appeared rapidly6,7,8,9, creating a need for new antiviral targets and new drugs for influenza virus infections. Using forward chemical genetics, we have identified influenza A nucleoprotein (NP) as a druggable target and found a small-molecule compound, nucleozin, that triggers the aggregation of NP and inhibits its nuclear accumulation. Nucleozin impeded influenza A virus replication in vitro with a nanomolar median effective concentration (EC50) and protected mice challenged with lethal doses of avian influenza A H5N1. Our results demonstrate that viral NP is a valid target for the development of small-molecule therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures and biological activities of nucleozin and related compounds.
Figure 2: Influenza A NP is the molecular target of nucleozin.
Figure 3: Nucleozin interacts with NP and causes NP aggregation.
Figure 4: Efficacies of nucleozin in a mice H5N1 virus infection model.

Similar content being viewed by others

References

  1. Webster, R.G. & Govorkova, E.A. H5N1 influenza – continuing evolution and spread. N. Engl. J. Med. 355, 2174–2177 (2006).

    Article  CAS  Google Scholar 

  2. Regoes, R.R. & Bonhoeffer, S. Emergence of drug-resistant influenza virus: population dynamical considerations. Science 312, 389–391 (2006).

    Article  CAS  Google Scholar 

  3. Moscona, A. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med. 360, 953–956 (2009).

    Article  CAS  Google Scholar 

  4. Dharan, N.J. et al. Oseltamivir-Resistance Working Group. Infections with oseltamivir-resistant influenza A(H1N1) virus in the United States. J. Am. Med. Assoc. 301, 1034–1041 (2009).

    Article  CAS  Google Scholar 

  5. Layne, S.P., Monto, A.S. & Taubenberger, J.K. Pandemic influenza: an inconvenient mutation. Science 323, 1560–1561 (2009).

    Article  CAS  Google Scholar 

  6. Lackenby, A., Thompson, C.I. & Democratis, J. The potential impact of neuraminidase inhibitor resistant influenza. Curr. Opin. Infect. Dis. 21, 626–638 (2008).

    Article  CAS  Google Scholar 

  7. Yuen, K.Y. et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467–471 (1998).

    Article  CAS  Google Scholar 

  8. Cumulative Number of Confirmed Human Cases of Avian Influenza A (H5N1) Reported to WHO (http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_09_24/en/index.html).

  9. Wong, S.S. & Yuen, K.Y. Avian influenza virus infections in humans. Chest 129, 156–168 (2006).

    Article  Google Scholar 

  10. Kao, R.Y. et al. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem. Biol. 11, 1293–1299 (2004).

    Article  CAS  Google Scholar 

  11. Kao, R.Y. et al. Characterization of SARS-CoV main protease and identification of biologically active small molecule inhibitors using a continuous fluorescence-based assay. FEBS Lett. 576, 325–330 (2004).

    Article  CAS  Google Scholar 

  12. Portela, A. & Digard, P. The influenza virus nucleoprotein: a multifunctional, RNA-binding protein pivotal to virus replication. J. Gen. Virol. 83, 723–734 (2002).

    Article  CAS  Google Scholar 

  13. Davey, J., Dimmock, N.J. & Colman, A. Identification of the Sequence Responsible for the Nuclear Accumulation of the Influenza Virus. Cell 40, 667–675 (1985).

    Article  CAS  Google Scholar 

  14. Boulo, S., Akarsu, H., Ruigrok, R.W.H. & Baudin, F. Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res. 124, 12–21 (2007).

    Article  CAS  Google Scholar 

  15. Ozawa, M. et al. Contributions of two nuclear localization signals of influenza A virus nucleoprotein to viral replication. J. Virol. 81, 30–41 (2007).

    Article  CAS  Google Scholar 

  16. Ye, Q., Krug, R.M. & Tao, Y.J. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444, 1078–1082 (2006).

    Article  CAS  Google Scholar 

  17. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R.G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. USA 97, 6108–6113 (2000).

    Article  CAS  Google Scholar 

  18. Wang, P. et al. Nuclear factor 90 negatively regulates influenza virus replication by interacting with viral nucleoprotein. J. Virol. 83, 7850–7861 (2009).

    Article  CAS  Google Scholar 

  19. Wu, W.W., Sun, Y.H. & Panté, N. Nuclear import of influenza A viral ribonucleoprotein complexes is mediated by two nuclear localization sequences on viral nucleoprotein. Virol. J. 4, 49 (2007).

    Article  Google Scholar 

  20. Digard, P. et al. Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments. J. Virol. 73, 2222–2231 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Elton, D., Medcalf, E., Bishop, K., Harrison, D. & Digard, P. Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding. J. Virol. 73, 7357–7367 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, B.J. et al. Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc. Natl. Acad. Sci. USA 105, 8091–8096 (2008).

    Article  CAS  Google Scholar 

  23. Stockwell, B.R. Chemical genetics: ligand-based discovery of gene function. Nat. Rev. Genet. 1, 116–125 (2000).

    Article  CAS  Google Scholar 

  24. Strausberg, R.L. & Schreiber, S.L. From knowing to controlling: a path from genomics to drugs using small molecule probes. Science 300, 294–295 (2003).

    Article  CAS  Google Scholar 

  25. Min, J.Y. & Krug, R.M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2′-5′ oligo (A) synthetase/RNase L pathway. Proc. Natl. Acad. Sci. USA 103, 7100–7105 (2006).

    Article  CAS  Google Scholar 

  26. Campanacci, V. et al. Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proc. Natl. Acad. Sci. USA 100, 5069–5074 (2003).

    Article  CAS  Google Scholar 

  27. Morris, G.M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998).

    Article  CAS  Google Scholar 

  28. Brooks, R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  29. Gubareva, L.V. et al. Characterization of mutants of influenza A virus selected with the neuraminidase inhibitor 4-guanidino-Neu5Ac2en. J. Virol. 70, 1818–1827 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Niepmann, M. & Zheng, J. Discontinuous native protein gel electrophoresis. Electrophoresis 27, 3949–3951 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Carol Yu Center for Infection Seed Fund for Basic Research from the University of Hong Kong, the Research Fund for the Control of Infectious Diseases and the Area of Excellence Scheme of the University Grant Council (Grant AoE/M-12/06). The Beckman Coulter Core system is a generous gift from the Hong Kong Sanatorium Hospital Doctors' Donation Fund by Y.-C. Tsao, C.-M. Chan, G. Lo, K.-M. Lai, R.K.Y. Lo, M. Tsao, B.S.S. Tse, T.-F. Tse, S.W.C. Wu, D.Y.C. Yu, R.Y.H. Yu and Y.-K. Tsao. We are grateful to R. Webster for gifts of the pHW2000 plasmids and E. Hoffmann for luciferase reporter system. We thank V. Poon, C. Chan and Q. Zhang for mice studies and K.H. Chan for virus strains. The use of Confocal Systems Core Facility provided by the LKS Faculty of Medicine, HKU, is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

R.Y.K. and K.-Y.Y conceived the study. R.Y.K. designed and performed experiments and analyzed data. D.Y. gave conceptual advice and technical support on chemistry. L.-S.L., W.H.W.T., J.D., M.-P.C., C.-M.C. and P.W. performed experiments. J.S., L.H., and G.C. performed molecular dockings. B.-J.Z. provided animal study data. J.-D.H. gave conceptual advice on protein trafficking. J.M. constructed database and performed HTS data normalization. H.C. and Y.G. provided reverse genetics system. K.-Y.Y. did troubleshooting and provided the grant support. R.Y.K. and K.-Y.Y. supervised the study and wrote the paper.

Corresponding authors

Correspondence to Richard Y Kao or Kwok-Yung Yuen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figs. 1–11 (PDF 657 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, R., Yang, D., Lau, LS. et al. Identification of influenza A nucleoprotein as an antiviral target. Nat Biotechnol 28, 600–605 (2010). https://doi.org/10.1038/nbt.1638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt.1638

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research