Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A community-driven global reconstruction of human metabolism

Abstract

Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including 2× more reactions and 1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the community-driven reconstruction approach to assemble Recon 2.
Figure 2: Pathway coverage in Recon 1 and Recon 2.
Figure 3: Predicted biomarkers for IEMs.
Figure 4: Comparison of metabolomic data with the extracellular metabolites present in Recon 2 metabolites.
Figure 5: Summary properties of the 65 draft cell type–specific models.

Similar content being viewed by others

References

  1. Palsson, B. Systems biology: properties of reconstructed networks. (Cambridge University Press, 2006).

  2. Thiele, I. & Palsson, B.O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

    Article  CAS  Google Scholar 

  3. Oberhardt, M.A., Palsson, B.O. & Papin, J.A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009).

    Article  Google Scholar 

  4. Orth, J.D., Thiele, I. & Palsson, B.O. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).

    Article  CAS  Google Scholar 

  5. Schellenberger, J. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307 (2011).

    Article  CAS  Google Scholar 

  6. Bordbar, A. & Palsson, B.O. Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J. Intern. Med. 271, 131–141 (2012).

    Article  CAS  Google Scholar 

  7. Duarte, N.C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  Google Scholar 

  8. Sahoo, S., Franzson, L., Jonsson, J.J. & Thiele, I. A compendium of inborn errors of metabolism mapped onto the human metabolic network. Mol. Biosyst. 8, 2545–2558 (2012).

    Article  CAS  Google Scholar 

  9. Folger, O. et al. Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7, 501 (2011).

    Article  Google Scholar 

  10. Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225–228 (2011).

    Article  CAS  Google Scholar 

  11. Chang, R.L., Xie, L., Bourne, P.E. & Palsson, B.O. Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput. Biol. 6, e1000938 (2010).

    Article  Google Scholar 

  12. Rolfsson, O., Palsson, B.O. & Thiele, I. The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions. BMC Syst. Biol. 5, 155 (2011).

    Article  Google Scholar 

  13. Rolfsson, O., Paglia, G., Magnusdottir, M., Palsson, B.O. & Thiele, I. Inferring the metabolism of human orphan metabolites from their metabolic network context affirms human gluconokinase activity. Biochem. J. 449, 427–435 (2013).

    Article  CAS  Google Scholar 

  14. Bordbar, A., Lewis, N.E., Schellenberger, J., Palsson, B.O. & Jamshidi, N. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422 (2010).

    Article  Google Scholar 

  15. Heinken, A., Sahoo, S., Fleming, R.M. & Thiele, I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4, 28–40 (2013).

    Article  Google Scholar 

  16. Stobbe, M.D., Houten, S.M., Jansen, G.A., van Kampen, A.H. & Moerland, P.D. Critical assessment of human metabolic pathway databases: a stepping stone for future integration. BMC Syst. Biol. 5, 165 (2011).

    Article  Google Scholar 

  17. Hao, T., Ma, H.W., Zhao, X.M. & Goryanin, I. Compartmentalization of the Edinburgh Human Metabolic Network. BMC Bioinformatics 11, 393 (2010).

    Article  Google Scholar 

  18. Gille, C. et al. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol. 6, 411 (2010).

    Article  Google Scholar 

  19. Sahoo, S. & Thiele, I. Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells. Human Mol. Genet. (in the press).

  20. Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6, 401 (2010).

    Article  Google Scholar 

  21. McHugh, D.M. et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet. Med. 13, 230–254 (2011).

    Article  Google Scholar 

  22. Blazier, A.S. & Papin, J.A. Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol. 3, 299 (2012).

    Article  Google Scholar 

  23. Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8, e1002518 (2012).

    Article  CAS  Google Scholar 

  24. Sigurdsson, M.I., Jamshidi, N., Steingrimsson, E., Thiele, I. & Palsson, B.O. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC Syst. Biol. 4, 140 (2010).

    Article  Google Scholar 

  25. Thiele, I. & Palsson, B.O. Reconstruction annotation jamborees: a community approach to systems biology. Mol. Syst. Biol. 6, 361 (2010).

    Article  Google Scholar 

  26. Herrgard, M.J. et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26, 1155–1160 (2008).

    Article  CAS  Google Scholar 

  27. Heavner, B.D., Smallbone, K., Barker, B., Mendes, P. & Walker, L.P. Yeast 5—an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst. Biol. 6, 55 (2012).

    Article  Google Scholar 

  28. Thiele, I. et al. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst. Biol. 5, 8 (2011).

    Article  Google Scholar 

  29. Kell, D.B. et al. Metabolic footprinting and systems biology: the medium is the message. Nat. Rev. Microbiol. 3, 557–565 (2005).

    Article  CAS  Google Scholar 

  30. Wishart, D.S. et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901–D906 (2008).

    Article  CAS  Google Scholar 

  31. Swainston, N., Smallbone, K., Mendes, P., Kell, D. & Paton, N. The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks. J. Integr. Bioinform. 8, 186 (2011).

    Article  Google Scholar 

  32. Hoppe, A., Hoffmann, S., Gerasch, A., Gille, C. & Holzhutter, H.G. FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics 12, 28 (2011).

    Article  Google Scholar 

  33. Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012).

    Article  CAS  Google Scholar 

  34. Gudmundsson, S. & Thiele, I. Computationally efficient flux variability analysis. BMC Bioinformatics 11, 489 (2010).

    Article  Google Scholar 

  35. Zelena, E. et al. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal. Chem. 81, 1357–1364 (2009).

    Article  CAS  Google Scholar 

  36. Wishart, D.S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009).

    Article  CAS  Google Scholar 

  37. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    Article  CAS  Google Scholar 

  38. Shlomi, T., Cabili, M.N., Herrgard, M.J., Palsson, B.O. & Ruppin, E. Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003–1010 (2008).

    Article  CAS  Google Scholar 

  39. Smallbone, K., Simeonidis, E., Broomhead, D.S. & Kell, D.B. Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS J. 274, 5576–5585 (2007).

    Article  CAS  Google Scholar 

  40. Smallbone, K., Simeonidis, E., Swainston, N. & Mendes, P. Towards a genome-scale kinetic model of cellular metabolism. BMC Syst. Biol. 4, 6 (2010).

    Article  Google Scholar 

  41. Le Novère, N. et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23, 1509–1515 (2005).

    Article  Google Scholar 

  42. Paglia, G. et al. Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-ToF-MS). Anal. Bioanal. Chem. 402, 1183–1198 (2012).

    Article  CAS  Google Scholar 

  43. Suhre, K. et al. A genome-wide association study of metabolic traits in human urine. Nat. Genet. 43, 565–569 (2011).

    Article  CAS  Google Scholar 

  44. Reed, J.L. et al. Systems approach to refining genome annotation. Proc. Natl. Acad. Sci. USA 103, 17480–17484 (2006).

    Article  CAS  Google Scholar 

  45. Wikoff, W.R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 106, 3698–3703 (2009).

    Article  CAS  Google Scholar 

  46. Claus, S.P. et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol. Syst. Biol. 4, 219 (2008).

    Article  Google Scholar 

  47. Haraldsdottir, H.S., Thiele, I. & Fleming, R.M. Quantitative assignment of reaction directionality in a multicompartmental human metabolic reconstruction. Biophys. J. 102, 1703–1711 (2012).

    Article  CAS  Google Scholar 

  48. Thorleifsson, S.G. & Thiele, I. rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27, 2009–2010 (2011).

    Article  CAS  Google Scholar 

  49. Shlomi, T., Cabili, M.N. & Ruppin, E. Predicting metabolic biomarkers of human inborn errors of metabolism. Mol. Syst. Biol. 5, 263 (2009).

    Article  Google Scholar 

  50. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    Article  CAS  Google Scholar 

  51. Swainston, N. & Mendes, P. libAnnotationSBML: a library for exploiting SBML annotations. Bioinformatics 25, 2292–2293 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.T. was supported, in part, by a Marie Curie International Reintegration Grant (249261) within the 7th European Community Framework Program. I.T., O.R., S.G.T. and M.A. were supported by the European Research Council grant proposal number 232816. S.S. and H.H. were supported by a Rannis research grant (100406022). Authors from Manchester thank the Biotechnology and Biological Sciences Research Council (BBSRC), and Engineering and Physical Sciences Research Council for their funding of the Manchester Centre for Integrative Systems Biology (grant BB/C008219/1), H.W. for Bioprocessing Research Industry Club grants, and P.M. and N. Swainston for support from the European Union FP7 project UNICELLSYS (grant agreement 201142). The Knut and Alice Wallenberg Foundation supported R.A., S.B. and I.N.; D.J. thanks the BBSRC for funding of Systems Approaches to Biological Research grants BB/F005938 and BB/F00561X. A.H. and C.B. were supported by the German Federal Ministry for Education and Research within the Virtual Liver Network (grant numbers 0315756 and 0315741). A.K.C. and J.A.P. acknowledge funding from the US National Institutes of Health (grant GM088244), National Science Foundation (grant 0643548) and Cystic Fibrosis Research Foundation (grant 1060). N.D.P. was supported by a National Cancer Institute to Independence Award in Cancer Research. I.G. thanks the Science and Technology Facilities Council for Scottish Bioinformatics Research Network funding. M.H. and P.M. thank the US National Institute of General Medical Sciences for support under grants R01GM070923 and R01GM080219. M.D.S. thanks the BioRange programme (project SP1.2.4) of The Netherlands Bioinformatics Centre for support under a Besluit Subsidies Investeringen Kennisinfrastructuur grant through The Netherlands Genomics Initiative.

Author information

Authors and Affiliations

Authors

Contributions

I.T. and N. Swainston led the project and developed the reconstruction. I.T., N. Swainston, B.Ø.P., P.M. and D.K. wrote the manuscript. B.Ø.P., D.B.K. and P.M. conceived the project. R.M.T.F. and A.H. performed validation of the reconstruction. S.S. and M.L.M. performed substantial manual curation of the reconstruction. M.K.A., H.H., O.R., M.D.S. and S.G.T. contributed to the analysis of the reconstruction and its models. I.T., N. Swainston, R.M.T.F., A.H., S.S., M.K.A., H.H., M.L.M., O.R., M.D.S., S.G.T., R.A., C.B., S.B., A.K.C., P.D., W.B.D., L.E., D. Hala, M.H., D. Hull, D.J., N. Jamshidi, J.J.J., N. Juty, S.K., I.N., N.L.N., N.M., A.M., J.A.P., N.D.P., E. Selkov, M.I., E. Simeonidis, N. Sonnenschein, K.S., A.S., J.H.G.M.v.B., D.W., I.G., J.N., H.V.W., D.B.K., P.M. and B.Ø.P. attended one or more jamboree meetings and provided manual curation of the reconstruction.

Corresponding author

Correspondence to Ines Thiele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–4, Supplementary Figures 1–6 (PDF 2031 kb)

Supplementary Data

Recon 2 and cell type–specific models in SBML format. (ZIP 31200 kb)

Supplementary Table 1

Unbalanced reactions and missing chemical formulae. (XLS 116 kb)

Supplementary Table 2

Metabolic task results. (XLS 380 kb)

Supplementary Table 3

Cancer exometabolome results. (XLS 357 kb)

Supplementary Table 4

Cell-type reactions. (XLS 338 kb)

Supplementary Table 5

IEM information (XLS 22 kb)

Supplementary Table 6

Evidence code (ECO) terms associated with Recon 2 reactions. (XLS 21 kb)

Supplementary Table 7

Modeling constraints. (XLS 793 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiele, I., Swainston, N., Fleming, R. et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol 31, 419–425 (2013). https://doi.org/10.1038/nbt.2488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt.2488

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research