Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Transformation of Aspergillus awamori by Agrobacterium tumefaciens–mediated homologous recombination

Abstract

Agrobacterium tumefaciens is known to transfer part of its tumor-inducing (Ti) plasmid to the filamentous fungus Aspergillus awamori by illegitimate recombination with the fungal genome. Here, we show that when this Ti DNA shares homology with the A. awamori genome, integration can also occur by homologous recombination. On the basis of this finding, we have developed an efficient method for constructing recombinant mold strains free from bacterial DNA by A. tumefaciens–mediated transformation. Multiple copies of a gene can be integrated rapidly at a predetermined locus in the genome, yielding transformants free of bacterial antibiotic resistance genes or other foreign DNA. Recombinant A. awamori strains were constructed containing up to nine copies of a Fusarium solani pisi cutinase expression cassette integrated in tandem at the pyrG locus. This allowed us to study how mRNA and protein levels are affected by gene copy number, without the influence of chromosomal environmental effects. Cutinase mRNA and protein were maximal with four gene copies, indicating a limitation at the transcriptional level. This transformation system will potentially stimulate market acceptance of derived products by avoiding introduction of bacterial and other foreign DNA into the fungi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design for targeted integration of multiple copies of a gene into Aspergillus awamori.
Figure 2: Plasmid pUR5755.
Figure 3: Southern blot of 11 transformants of Aspergillus awamori AWCSCE.
Figure 4: (A) Northern blot of RNA isolated from Aspergillus awamori AWCSCE transformants, containing different cutinase gene copy numbers (indicated above the lanes), after 24 h of induction in minimal medium with 5% D-xylose.
Figure 5: Cutinase production levels from cultures of Aspergillus awamori AWCSCE transformants with a different number of cutinase gene copies (varying from one to nine, corresponding to the transformants shown in Fig. 3) integrated at the pyrG locus.

Similar content being viewed by others

References

  1. Lowe, D.A. in Handbook of applied mycology. Fungal biotechnology. (eds Arora, D.K., Elander, R.P. & Mukerji, K.G.) 681–706 (Marcel Dekker, New York; 1992).

    Google Scholar 

  2. Gouka, R.J., Punt, P.J. & van den Hondel, C.A.M.J.J. Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl. Microbiol. Biotechnol. 47, 1–11 (1997).

    Article  CAS  Google Scholar 

  3. Archer, D.B. & Peberdy J.F. The molecular biology of secreted enzyme production by fungi. Crit. Rev. Biotechnol. 17, 273–306 (1997).

    Article  CAS  Google Scholar 

  4. Verdoes, J.C., Punt, P.J. & van den Hondel, C.A.M.J.J. Molecular genetic strain improvement for the overproduction of fungal proteins by filamentous fungi. Appl. Microbiol. Biotechnol. 43, 195–205 (1995).

    Article  CAS  Google Scholar 

  5. Timberlake, W.E. in More gene manipulations in fungi (eds Bennett, J.W. & Lasure, L.L.) 51–85 (Academic, San Diego; 1991).

    Book  Google Scholar 

  6. Gouka, R.J., Punt, P.J., Hessing, J.G.M. & van den Hondel, C.A.M.J.J. Analysis of heterologous protein production in defined recombinant Aspergillus awamori strains. Appl. Environ. Microbiol. 62, 1951–1957 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kubicek-Pranz, E.M., Gruber, F. & Kubicek, C.P. Transformation of Trichoderma reesei with the cellobiohydrolase-II gene as a means for obtaining strains with increased cellulase production and specific activity. J. Biotechnol. 20, 83–94 (1991).

    Article  CAS  Google Scholar 

  8. van den Hondel, C.A.M.J.J., Punt, P.J. & van Gorcom, R.F. Production of extracellular proteins by the filamentous fungus Aspergillus. Antonie van Leeuwenhoek 61, 153–160 (1992).

    Article  CAS  Google Scholar 

  9. Verdoes, J.C. et al. Glucoamylase overexpression in Aspergillus niger—molecular genetic analysis of strains containing multiple copies of the glaA gene. Transgenic Res. 2, 84–92 (1993).

    Article  CAS  Google Scholar 

  10. Archer, D.B., Jeenes, D.J. & MacKenzie, D.A. Strategies for improving heterologous protein production from filamentous fungi. Antonie van Leeuwenhoek 65, 245–250 (1994).

    Article  CAS  Google Scholar 

  11. Van Gemeren, I.A. et al. The effect of pre- and pro-sequences and multicopy integration on heterologous expression of the Fusarium solani pisi cutinase gene in Aspergillus awamori. Appl. Microbiol. Biotechnol. 45, 755–763 (1996).

    Article  CAS  Google Scholar 

  12. van den Hondel, C.A.M.J.J. & Punt, P.J. in Applied molecular genetics of fungi. (eds Peberdy, J.F., Caten, C.E., Ogden, J.E. & Bennett, J.W.) 1–28 (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  13. Gouka, R.J., Hessing, J.G.M., Stam, H., Musters, W. & van den Hondel, C.A.M.J.J. A novel strategy for the isolation of defined pyrG mutants and the development of a site-specific integration system for Aspergillus awamori. Curr. Genet. 27, 536–540 (1995).

    Article  CAS  Google Scholar 

  14. Hanahan, J. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580 (1983).

    Article  CAS  Google Scholar 

  15. Meilhoc, E., Masson, J.M. & Teissie, J. High efficiency transformation of intact yeast cells by electric field pulses. Bio/Technology 8, 223–227 (1990).

    CAS  PubMed  Google Scholar 

  16. Gietz, R.D., Schiestl, R.H., Willems, A.R. & Woods, R.A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360 (1995).

    Article  CAS  Google Scholar 

  17. Ward, M., Kodama, K.H. & Wilson, L.J. Transformation of Aspergillus awamori and A. niger by electroporation. Exper. Mycol. 13, 289–293 (1989).

    Article  Google Scholar 

  18. Groot, M.J.A. de, Bundock, P., Hooykaas, P.J.J. & Beijersbergen, A.G.M. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16, 839–842 (1998).

    Article  Google Scholar 

  19. Van Gemeren, I.A., Musters, W., van den Hondel, C.A.M.J.J. & Verrips, C.T. Construction and heterologous expression of a synthetic copy of the cutinase cDNA from Fusarium solani pisi. J. Biotechnol. 40, 155–162 (1995).

    Article  CAS  Google Scholar 

  20. Gouka, R.J. et al. An expression system based on the promoter region of the Aspergillus awamori 1,4-beta-endoxylanase-A gene. Appl. Microbiol. Biotechnol. 46, 28–35 (1996).

    Article  CAS  Google Scholar 

  21. Verdoes, J.C., Punt, P.J., Stouthamer, A.H. & van den Hondel, C.A.M.J.J. The effect of multiple copies of the upstream region on expression of the Aspergillus niger glucoamylase-encoding gene. Gene 145, 179–187 (1994).

    Article  CAS  Google Scholar 

  22. Gwynne, D.I. et al. Development of an expression system in Aspergillus nidulans. Biochem. Soc. Trans. 17, 338–340 (1989).

    Article  CAS  Google Scholar 

  23. De Block, M. The cell biology of plant transformation: current state, problems, prospects and the implications for plant breeding. Euphytica 71, 1–14 (1993).

    Article  CAS  Google Scholar 

  24. Bundock, P., Den Dulk-Ras, A., Beijersbergen, A. & Hooykaas, P.J.J. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206–3214 (1995).

    Article  CAS  Google Scholar 

  25. Beijersbergen, A., Den Dulk-Ras, A., Schilperoort, R.A. & Hooykaas, P.J.J. Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256, 1324–1327 (1992).

    Article  CAS  Google Scholar 

  26. Hooykaas, P.J.J., Roobol, C. & Schilperoort, R.A. Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens. J. Gen. Microbiol. 110, 99–109 (1979).

    Article  CAS  Google Scholar 

  27. Bennett, J.W. & Lasure, L.L. in More gene manipulations in fungi. (eds Bennett, J.W. & Lasure, L.L) 441–458 (Academic, San Diego; 1991).

    Book  Google Scholar 

  28. Mozo, T. & Hooykaas, P.J.J. Electroporation of megaplasmids into Agrobacterium. Plant Mol. Biol. 16, 917–918 (1991).

    Article  CAS  Google Scholar 

  29. Offringa, R. Gene targeting in plants using Agrobacterium. PhD thesis, Leiden University, Leiden (1992).

    Google Scholar 

  30. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual, 2nd edn (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; 1989).

    Google Scholar 

  31. Kolar, M., Punt, P.J., van den Hondel, C.A.M.J.J., & Schwab, H. Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene. Gene 62, 127–134 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.W. Chapman is acknowledged for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin J. Gouka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouka, R., Gerk, C., Hooykaas, P. et al. Transformation of Aspergillus awamori by Agrobacterium tumefaciens–mediated homologous recombination. Nat Biotechnol 17, 598–601 (1999). https://doi.org/10.1038/9915

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/9915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing