Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes

Abstract

Rapid, multiplexed, sensitive and specific molecular detection is of great demand in gene profiling, drug screening, clinical diagnostics and environmental analysis1,2,3. One of the major challenges in multiplexed analysis is to identify each specific reaction with a distinct label or 'code'4. Two encoding strategies are currently used: positional encoding, in which every potential reaction is preassigned a particular position on a solid-phase support such as a DNA microarray5,6,7,8, and reaction encoding, where every possible reaction is uniquely tagged with a code that is most often optical or particle based4,9,10,11,12,13. The micrometer size, polydispersity, complex fabrication process and nonbiocompatibility of current codes limit their usability1,4,12. Here we demonstrate the synthesis of dendrimer-like DNA-based, fluorescence-intensity-coded nanobarcodes, which contain a built-in code and a probe for molecular recognition. Their application to multiplexed detection of the DNA of several pathogens is first shown using fluorescence microscopy and dot blotting, and further demonstrated using flow cytometry that resulted in detection that was sensitive (attomole) and rapid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of nanobarcodes.
Figure 2: Microbead-based DNA detection using fluorescence microscopy.
Figure 3: DNA blotting assay with nanobarcodes.
Figure 4: Multiplexed DNA detection using flow cytometry.

Similar content being viewed by others

References

  1. Han, M., Gao, X.H., Su, J.Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).

    Article  CAS  Google Scholar 

  2. Fulton, R.J., McDade, R.L., Smith, P.L., Kienker, L.J. & Kettman, J.R. Advanced multiplexed analysis with the FlowMetrix(TM) system. Clin. Chem. 43, 1749–1756 (1997).

    Article  CAS  Google Scholar 

  3. Steemers, F.J., Ferguson, J.A. & Walt, D.R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat. Biotechnol. 18, 91–94 (2000).

    Article  CAS  Google Scholar 

  4. Braeckmans, K., De Smedt, S.C., Leblans, M., Pauwels, R. & Demeester, J. Encoding microcarriers: Present and future technologies. Nat. Rev. Drug Discov. 1, 447–456 (2002).

    Article  CAS  Google Scholar 

  5. Duggan, D., Bittner, M., Chen, Y., Meltzer, P. & Trent, J. Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14 (1999).

    Article  CAS  Google Scholar 

  6. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460 (1996).

    Article  CAS  Google Scholar 

  7. Schena, M., Shalon, D., Davis, R. & Brown, P. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  8. Cheung, V.G. et al. Making and reading microarrays. Nat. Genet. 21, 15–19 (1999).

    Article  CAS  Google Scholar 

  9. Cunin, F. et al. Biomolecular screening with encoded porous-silicon photonic crystals. Nat. Mater. 1, 39–41 (2002).

    Article  CAS  Google Scholar 

  10. Wang, J., Liu, G.D. & Rivas, G. Encoded beads for electrochemical identification. Anal. Chem. 75, 4667–4671 (2003).

    Article  CAS  Google Scholar 

  11. Chan, W.C. et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002).

    Article  CAS  Google Scholar 

  12. Nicewarner-Pena, S.R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    Article  CAS  Google Scholar 

  13. Nam, J.M., Thaxton, C.S. & Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    Article  CAS  Google Scholar 

  14. Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nat. Mater. 3, 38–42 (2004).

    Article  CAS  Google Scholar 

  15. Luo, D. The road from biology to materials. Mater. Today 6, 38–43 (2003).

    Article  CAS  Google Scholar 

  16. Ried, T., Baldini, A., Rand, T.C. & Ward, D.C. Simultaneous visualization of 7 different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci. USA 89, 1388–1392 (1992).

    Article  CAS  Google Scholar 

  17. Taton, T., Mirkin, C. & Letsinger, R. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    Article  CAS  Google Scholar 

  18. Sjostedt, A., Eriksson, U., Berglund, L. & Tarnvik, A. Detection of Francisella tularensis in ulcers of patients with tularemia by PCR. J. Clin. Microbiol. 35, 1045–1048 (1997).

    Article  CAS  Google Scholar 

  19. Sanchez, A. et al. Detection and molecular characterization of Ebola viruses causing disease in human and nonhuman primates. J. Infect. Dis. 179, S164–S169 (1999).

    Article  CAS  Google Scholar 

  20. Poon, L.L. et al. Detection of SARS coronavirus in patients with severe acute respiratory syndrome by conventional and real-time quantitative reverse transcription-PCR assays. Clin. Chem. 50, 67–72 (2004).

    Article  CAS  Google Scholar 

  21. Fuja, T., Hou, S. & Bryant, P. A multiplex microsphere bead assay for comparative RNA expression analysis using flow cytometry. J. Biotechnol. 108, 193–205 (2004).

    Article  CAS  Google Scholar 

  22. Vignali, D.A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 243, 243–255 (2000).

    Article  CAS  Google Scholar 

  23. Wang, J. et al. Adsorption and detection of DNA dendrimers at carbon electrodes. Electroanal. 10, 553–556 (1998).

    Article  CAS  Google Scholar 

  24. Wang, J., Jiang, M., Nilsen, T. & Getts, R. Dendritic nucleic acid probes for DNA biosensors. J. Am. Chem. Soc. 120, 8281–8282 (1998).

    Article  CAS  Google Scholar 

  25. Nilsen, T., Grayzel, J. & Prensky, W. Dendritic nucleic acid structures. J. Theor. Biol. 187, 273–284 (1997).

    Article  CAS  Google Scholar 

  26. Capaldi, S., Getts, R.C. & Jayasena, S.D. Signal amplification through nucleotide extension and excision on a dendritic DNA platform. Nucleic Acids Res. 28, e21 (2000).

    Article  CAS  Google Scholar 

  27. Lowe, M., Spiro, A., Zhang, Y. & Getts, R. Multiplexed, particle-based detection of DNA using flow cytometry with 3DNA dendrimers for signal amplification. Cytom Part A 60A, 135–144 (2004).

    Article  CAS  Google Scholar 

  28. Shchepinov, M., Mir, K., Elder, J., Frank-Kamenetskii, M. & Southern, E. Oligonucleotide dendrimers: stable nano-structures. Nucleic Acids Res. 27, 3035–3041 (1999).

    Article  CAS  Google Scholar 

  29. Shchepinov, M., Udalova, I., Bridgman, A. & Southern, E. Oligonucleotide dendrimers: synthesis and use as polylabelled DNA probes. Nucleic Acids Res. 25, 4447–4454 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the Cornell Center for Advanced Technology and the Cornell Center for Vertebrate Genomics for financial support. This material is based upon work supported in part by the Science and Technology Center Program of the National Science Foundation under agreement no. ECS-9876771. We thank Yung-Fu Chang for providing pathogen genomic DNA (Mycobacterium avium subsp. paratuberculosis) and Carol Bayles for technical support on microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Luo.

Ethics declarations

Competing interests

A patent for similar technology is being filed, the value of which may be increased by this publication.

Supplementary information

Supplementary Fig. 1

Evaluation of nanobarcodes with agarose gel electrophoresis. (PDF 745 kb)

Supplementary Fig. 2

Schematic drawing of nanobarcode denaturation (without showing fluorescence dyes). (PDF 96 kb)

Supplementary Fig. 3

DNA nanobarcode quantitative decoding based on microbead populations. (PDF 42 kb)

Supplementary Fig. 4

Statistics multiplexed DNA detection using flow cytometry. (PDF 55 kb)

Supplementary Table 1

Building oligonucleotides (PDF 47 kb)

Supplementary Table 2

Capture probes, report probes and target DNA (PDF 47 kb)

Supplementary Table 3

Y-DNA building blocks (PDF 43 kb)

Supplementary Table 4

DNA nanobarcodes (PDF 40 kb)

Supplementary Table 5

Code library (PDF 45 kb)

Supplementary Note 1 (PDF 66 kb)

Supplementary Note 2 (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Cu, Y. & Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23, 885–889 (2005). https://doi.org/10.1038/nbt1106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing