Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recombinant expression of selectively sulfated proteins in Escherichia coli

Abstract

Although tyrosine sulfation is a post-translational modification widespread across multicellular eukaryotes1, its biological functions remain largely unknown. This is in part due to the difficulties of synthesizing selectively sulfated proteins. Here we report the selective incorporation of sulfotyrosine into proteins in bacteria by genetically encoding the modified amino acid in response to the amber nonsense codon TAG. Moreover, we show that this strategy enables direct expression in Escherichia coli of sulfo-hirudin, previously inaccessible through recombinant methods. The affinity of sulfo-hirudin toward human thrombin is enhanced more than tenfold over that of desulfo-hirudin, suggesting that sulfo-hirudin may offer clinical advantages for use as an anticoagulant2. This general approach to the biosynthesis of sulfated proteins should facilitate further study and application of tyrosine sulfation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Desulfo-hirudin and sulfo-hirudin migration on a denaturing PAGE gel stained with Coomassie blue.
Figure 3: Representative plots of thrombin inhibition with their respective fitted progress curves superimposed on the raw data points.

Similar content being viewed by others

References

  1. Moore, K.L. The biology and enzymology of protein tyrosine O-sulfation. J. Biol. Chem. 278, 24243–24246 (2003).

    Article  CAS  Google Scholar 

  2. Di Nisio, M., Middeldorp, S. & Buller, H.R. Direct thrombin inhibitors. N. Engl. J. Med. 353, 1028–1040 (2005).

    Article  CAS  Google Scholar 

  3. Kehoe, J.W. & Bertozzi, C.R. Tyrosine sulfation: a modulator of extracellular protein-protein interactions. Chem. Biol. 7, R57–R61 (2000).

    Article  CAS  Google Scholar 

  4. Preobrazhensky, A.A. et al. Monocyte chemotactic protein-1 receptor CCR2B is a glycoprotein that has tyrosine sulfation in a conserved extracellular N-terminal region. J. Immunol. 165, 5295–5303 (2000).

    Article  CAS  Google Scholar 

  5. Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).

    Article  CAS  Google Scholar 

  6. Farzan, M. et al. The role of post-translational modifications of the CXCR4 amino terminus in stromal-derived factor 1 alpha association and HIV-1 entry. J. Biol. Chem. 277, 29484–29489 (2002).

    Article  CAS  Google Scholar 

  7. Veldkamp, C.T., Seibert, C., Peterson, F.C., Sakmar, T.P. & Volkman, B.F. Recognition of a CXCR4 sulfotyrosine by the chemokine stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12). J. Mol. Biol. 359, 1400–1409 (2006).

    Article  CAS  Google Scholar 

  8. Fong, A.M., Alam, S.M., Imai, T., Haribabu, B. & Patel, D.D. CX3CR1 tyrosine sulfation enhances fractalkine-induced cell adhesion. J. Biol. Chem. 277, 19418–19423 (2002).

    Article  CAS  Google Scholar 

  9. Somers, W.S., Tang, J., Shaw, G.D. & Camphausen, R.T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103, 467–479 (2000).

    Article  CAS  Google Scholar 

  10. Dong, J.F., Li, C.Q. & Lopez, J.A. Tyrosine sulfation of the glycoprotein Ib-IX complex: identification of sulfated residues and effect on ligand binding. Biochemistry 33, 13946–13953 (1994).

    Article  CAS  Google Scholar 

  11. Bagdy, D., Barabas, E., Graf, L., Petersen, T.E. & Magnusson, S. Hirudin. Methods Enzymol. 45, 669–678 (1976).

    Article  CAS  Google Scholar 

  12. Choe, H. et al. Tyrosine sulfation of human antibodies contributes to recognition of the CCR5 binding region of HIV-1 gp120. Cell 114, 161–170 (2003).

    Article  CAS  Google Scholar 

  13. Xiang, S.H. et al. Functional mimicry of a human immunodeficiency virus type 1 coreceptor by a neutralizing monoclonal antibody. J. Virol. 79, 6068–6077 (2005).

    Article  CAS  Google Scholar 

  14. Kirano, Y., Kimura, T. & Sakakibara, S. Total synthesis of porcine cholecystokinin-33 (CCK-33). J. Chem. Soc. Chem. Commun., 323–325 (1987).

  15. Muramatsu, R. et al. Enzymic O-sulfation of tyrosine residues in hirudins by sulfotransferase from Eubacterium A-44. Eur. J. Biochem. 223, 243–248 (1994).

    Article  CAS  Google Scholar 

  16. Young, T. & Kiessling, L.L. A strategy for the synthesis of sulfated peptides. Angew. Chem. Int. Edn Engl. 41, 3449–3451 (2002).

    Article  CAS  Google Scholar 

  17. Stone, S.R. & Hofsteenge, J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry 25, 4622–4628 (1986).

    Article  CAS  Google Scholar 

  18. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  Google Scholar 

  19. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  Google Scholar 

  20. Zhang, Z. et al. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 8882–8887 (2004).

    Article  CAS  Google Scholar 

  21. Bose, M., Groff, D., Xie, J., Brustad, E. & Schultz, P.G. The incorporation of a photoisomerizable amino acid into proteins in E. coli. J. Am. Chem. Soc. 128, 388–389 (2006).

    Article  CAS  Google Scholar 

  22. Wolfender, J.L. et al. Identification of tyrosine sulfation in Conus pennaceus conotoxins alpha-PnIA and alpha-PnIB: further investigation of labile sulfo- and phosphopeptides by electrospray, matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry. J. Mass Spectrom. 34, 447–454 (1999).

    Article  CAS  Google Scholar 

  23. Nemeth-Cawley, J.F., Karnik, S. & Rouse, J.C. Analysis of sulfated peptides using positive electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 36, 1301–1311 (2001).

    Article  CAS  Google Scholar 

  24. Markwardt, F. Hirudin as alternative anticoagulant–a historical review. Semin. Thromb. Hemost. 28, 405–414 (2002).

    Article  CAS  Google Scholar 

  25. Braun, P.J., Dennis, S., Hofsteenge, J. & Stone, S.R. Use of site-directed mutagenesis to investigate the basis for the specificity of hirudin. Biochemistry 27, 6517–6522 (1988).

    Article  CAS  Google Scholar 

  26. Ryu, Y. & Schultz, P.G. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat. Methods 3, 263–265 (2006).

    Article  CAS  Google Scholar 

  27. Cha, S. Tight-binding inhibitors–III. A new approach for the determination of competition between tight-binding inhibitors and substrates–inhibition of adenosine deaminase by coformycin. Biochem. Pharmacol. 25, 2695–2702 (1976).

    Article  CAS  Google Scholar 

  28. Komatsu, Y., Misawa, S., Sukesada, A., Ohba, Y. & Hayashi, H. CX-397, a novel recombinant hirudin analog having a hybrid sequence of hirudin variants-1 and -3. Biochem. Biophys. Res. Commun. 196, 773–779 (1993).

    Article  CAS  Google Scholar 

  29. Szedlacsek, S.E. & Duggleby, R.G. Kinetics of slow and tight-binding inhibitors. Methods Enzymol. 249, 144–180 (1995).

    Article  CAS  Google Scholar 

  30. Velan, T. & Chandler, W.L. Effects of surgical trauma and cardiopulmonary bypass on active thrombin concentrations and the rate of thrombin inhibition in vivo. Pathophysiol. Haemost. Thromb. 33, 144–156 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jianming Xie for providing synthetase libraries for this project and Youngha Ryu for providing the pSup vector. C.C.L. thanks Jianming Xie, Eric Brustad, Vaughn Smider, Wenshe Liu, Jacob Pinnas and Michael Jahnz for invaluable discussions and advice. C.C.L. gratefully acknowledges the Fannie and John Hertz Foundation and the National Science Foundation for predoctoral fellowships. This research was generously supported by the USNational Institutes of Health (GM62159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang C Liu or Peter G Schultz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sulfotyrosine dependent expression of Z-domain. (PDF 1726 kb)

Supplementary Fig. 2

Mass spectra characterization of sulfo-hirudin. (PDF 301 kb)

Supplementary Fig. 3

Sulfotyrosine dependent expression of sulfo-hirudin. (PDF 403 kb)

Supplementary Table 1

Thrombin inhibition by hirudin kinetic constants. (PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Schultz, P. Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat Biotechnol 24, 1436–1440 (2006). https://doi.org/10.1038/nbt1254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing