Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans

Abstract

Epithelial cell junctions are essential for cell polarity, adhesion and morphogenesis. We have analysed VAB-9, a cell junction protein in Caenorhabditis elegans. VAB-9 is a predicted four-pass integral membrane protein that has greatest similarity to BCMP1 (brain cell membrane protein 1, a member of the PMP22/EMP/Claudin family of cell junction proteins) and localizes to the adherens junction domain of C. elegans apical junctions1,2,3,4. Here, we show that VAB-9 requires HMR-1/cadherin for localization to the cell membrane, and both HMP-1/α-catenin and HMP-2/β-catenin for maintaining its distribution at the cell junction. In vab-9 mutants, morphological defects correlate with disorganization of F-actin at the adherens junction; however, localization of the cadherin–catenin complex and epithelial polarity is normal. These results suggest that VAB-9 regulates interactions between the cytoskeleton and the adherens junction downstream of or parallel to α-catenin and/or β-catenin. Mutations in vab-9 enhance adhesion defects through functional loss of the cell junction genes apical junction molecule 1 (ajm-1) and discs large 1 (dlg-1), suggesting that VAB-9 is involved in cell adhesion. Thus, VAB-9 represents the first characterized tetraspan adherens junction protein in C. elegans and defines a new family of such proteins in higher eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: vab-9 epidermal phenotypes.
Figure 2: Molecular analysis and expression of VAB-9.
Figure 3: VAB-9 colocalizes with adherens junction components.
Figure 4: VAB-9 localization requires HMR-1, HMP-1 and HMP-2.
Figure 5: Interactions between vab-9, ajm-1 and dlg-1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Notterpek, L. et al. Peripheral myelin protein 22 is a constituent of intercellular junctions in epithelia. Proc. Natl Acad. Sci. USA 98, 14404–14409 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor, V., Welcher, A.A., Program, A.E. & Suter, U. Epithelial membrane protein-1, peripheral myelin protein 22, and lens membrane protein 20 define a novel gene family. J. Biol. Chem. 270, 28824–28833 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Christophe-Hobertus, C., Szpirer, C., Guyon, R. & Christophe, D. Identification of the gene encoding Brain Cell Membrane Protein I (BCMPI), a putative four-transmembrane protein distantly related to the Peripheral Myelin Protein 22/Epithelial Membrane Proteins and the Claudins. BMC Genomics 2, 3 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsukita, S., Furuse, M. & Itoh, M. Multifunctional strands in tight junctions. Nature Rev. Mol. Cell Biol. 2, 285–293 (2001).

    Article  CAS  Google Scholar 

  5. Farquhar, M.G. & Palade, G.E. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yeaman, C., Grindstaff, K., Hansen, M. & Nelson, W. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Costa, M. et al. A putative catenin–cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141, 297–308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raich, W.B., Agbunag, C. & Hardin, J. Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr. Biol. 9, 1139–1146 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. McMahon, L., Legouis, R., Vonesch, J.L. & Labouesse, M. Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J. Cell Sci. 114, 2265–2277 (2001).

    CAS  PubMed  Google Scholar 

  10. Legouis, R. et al. LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nature Cell Biol. 2, 415–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Bossinger, O., Klebes, A., Segbert, C., Theres, C. & Knust, E. Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev. Biol. 230, 29–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Firestein, B.L. & Rongo, C. DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol. Biol. Cell 12, 3465–3475 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koppen, M. et al. Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nature Cell Biol. 3, 983–991 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Knust, E. & Bossinger, O. Composition and formation of intercellular junctions in epithelial cells. Science 298, 1955–1959 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Baumgartner, S. et al. A Drosophila neurexin is required for septate junction and blood–nerve barrier formation and function. Cell 87, 1059–1068 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Lamb, R.S., Ward, R.E., Schweizer, L. & Fehon, R.G. Drosophila coracle, a member of the protein 4.1 superfamily, has essential functions in the septate junction and developmental functions in embryonic and adult epithelial cells. Mol. Biol. Cell 9, 3505–3519 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohler, W.A., Simske, J.S., Williams-Masson, E.M., Hardin, J.D. & White, J.G. Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8, 1087–1090 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Priess, J.R. & Hirsh, D.I. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev. Biol. 117, 156–173 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K. & Tsukita, S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141, 1539–1550 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furuse, M., Sasaki, H., Fujimoto, K. & Tsukita, S. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143, 391–401 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hresko, M.C., Williams, B.D. & Waterston, R.H. Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J. Cell Biol. 124, 491–506 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Karabinos, A., Schmidt, H., Harborth, J., Schnabel, R. & Weber, K. Essential roles for four cytoplasmic intermediate filament proteins in Caenorhabditis elegans development. Proc. Natl Acad. Sci. USA 98, 7863–7868 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Herman, R. & Horvitz, H. in Nematodes as Biological Models, Volume 1: Behavioral and Developmental Models. (ed. Zuckerman, B.) 227–262 (Academic Press, New York, 1980).

    Google Scholar 

  24. Mohler, W.A. & White, J.G. Stereo-4-D reconstruction and animation from living fluorescent specimens. Biotechniques 24, 1006–1010, 1012 (1998).

    CAS  PubMed  Google Scholar 

  25. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hodgkin, J. Male phenotypes and mating efficiency in C. elegans. Genetics 103, 43–64 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Williams, B.D., Schrank, B., Huynh, C., Shownkeen, R. & Waterston, R.H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131, 609–624 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stringham, E.G., Dixon, D.K., Jones, D. & Candido, E.P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol. Biol. Cell 3, 221–233 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, X. et al. Multiple ephrins control cell organization in C. elegans using kinase-dependent and -independent functions of the VAB-1 Eph receptor. Mol. Cell 4, 903–913 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Williams-Masson, E.M., Malik, A.N. & Hardin, J. An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development 124, 2889–2901 (1997).

    CAS  PubMed  Google Scholar 

  31. Moorthy, S., Chen, L. & Bennett, V. Caenorhabditis elegans β-G spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. J. Cell Biol. 149, 915–930 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Priess and members of the Priess lab for providing lab space, research materials and intellectual input. We specifically thank J. Priess for suggesting the use of tetraploid strain SP346 to obtain larger embryos. We thank members of the Hardin lab, M. Labouesse, L. Bruggeman, D. Sonneborn and Joe for helpful discussions. We thank J. White and W. Mohler for assistance with MPLSM, D. Hall for advice with TEM, A. Chisholm for the vab-9 (ju6) strain, P. Heid for cosmid pools, and A. Fire for GFP and heat-shock vectors. Some of the nematode strains used in this study were provided by the Caenorhabditis Genetics Centre, which is funded by the NIH National Centre for Research Resources (NCRR). The Nematode Expression Database (http://nematode.lab.nig.ac.jp/) and some cDNA clones were provided courtesy of the laboratory of Y. Kohara at the National Institute of Genetics, Japan. This work was supported by NIH grant GM58038 (J.D.H.). J.S.S. was a Helen Hay Whitney fellow. Some funds were provided by the Gamete and Embryo Training Grant from the University of Wisconsin. The Bio-Rad MRC 1024 confocal microscope at the University of Wisconsin is supported by National Science Foundation grant 9724515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Simske.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simske, J., Köppen, M., Sims, P. et al. The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans. Nat Cell Biol 5, 619–625 (2003). https://doi.org/10.1038/ncb1002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ncb1002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing