Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The phox homology domain of phospholipase D activates dynamin GTPase activity and accelerates EGFR endocytosis

Abstract

Dynamin is a large GTP-binding protein that mediates endocytosis by hydrolyzing GTP1,2,3. Previously, we reported that phospholipase D2 (PLD2) interacts with dynamin in a GTP-dependent manner4. This implies that PLD may regulate the GTPase cycle of dynamin. Here, we show that PLD functions as a GTPase activating protein (GAP) through its phox homology domain (PX), which directly activates the GTPase domain of dynamin, and that the arginine residues in the PLD–PX are vital for this GAP function. Moreover, wild-type PLD–PX, but not mutated PLD–PXs defective for GAP function in vitro, increased epidermal growth factor receptor (EGFR) endocytosis at physiological EGF concentrations. In addition, the silencing of PLDs was shown to retard EGFR endocytosis and the addition of wild-type PLDs or lipase-inactive PLDs, but not PLD1 mutants with defective GAP activity for dynamin in vitro, resulted in the recovery of EGFR endocytosis. These findings suggest that PLD, functioning as an intermolecular GAP for dynamin, accelerates EGFR endocytosis. Moreover, we determined that the phox homology domain itself had GAP activity — a novel function in addition to its role as a binding motif for proteins or lipids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PLD–PX interacts with the GTPase domain of dynamin.
Figure 2: The phox homology domain of PLD functions as a GAP for dynamin in vitro.
Figure 3: The R128 and R197 residues of PLD1–PX are crucial for the GAP activity of dynamin in vitro.
Figure 4: The effects of PLD1–PX on EGFR endocytosis at a low EGF concentrations.
Figure 5: The GAP function of PLD for dynamin in EGFR endocytosis.

Similar content being viewed by others

References

  1. Schmid, S. L., McNiven, M. A. & De Camilli, P. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10, 504–512 (1998).

    Article  CAS  Google Scholar 

  2. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).

    Article  CAS  Google Scholar 

  3. Hinshaw, J. E. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483–519 (2000).

    Article  CAS  Google Scholar 

  4. Park, J. B. et al. H. Regulation of phospholipase D2 by GTP-dependent interaction with dynamin. Adv. Enzyme Regul. 44, 249–264 (2004).

    Article  CAS  Google Scholar 

  5. Hammond, S. M. et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270, 29640–29643 (1995).

    Article  CAS  Google Scholar 

  6. Colley, W. C. et al. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7, 191–201 (1997).

    Article  CAS  Google Scholar 

  7. Frohman, M. A., Sung, T. C. & Morris, A. J. Mammalian phospholipase D structure and regulation. Biochim. Biophys. Acta. 1439, 175–186 (1999).

    Article  CAS  Google Scholar 

  8. Exton, J. H. Regulation of phospholipase D. FEBS Lett. 531, 58–61 (2002).

    Article  CAS  Google Scholar 

  9. Park, J. B. et al. Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by α-actinin in an ADP-ribosylation factor-reversible manner. J. Biol. Chem. 275, 21295–21301 (2000).

    Article  CAS  Google Scholar 

  10. Jang, I. H. et al. The direct interaction of phospholipase C-γ1 with phospholipase D2 is important for epidermal growth factor signaling. J. Biol. Chem. 278, 18184–18190 (2003).

    Article  CAS  Google Scholar 

  11. Warnock, D. E. & Schmid, S. L. Dynamin GTPase, a force-generating molecular switch. Bioessays 18, 885–893 (1996).

    Article  CAS  Google Scholar 

  12. Scheffzek, K., Ahmadian, M. R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci. 23, 257–262 (1998).

    Article  CAS  Google Scholar 

  13. Sever, S., Muhlberg, A B., & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).

    Article  CAS  Google Scholar 

  14. Ellson, C. D., Andrews, S., Stephens, L. R. & Hawkins, P. T. The PX domain: a new phosphoinositide-binding module. J. Cell Sci. 115, 1099–1105 (2002).

    CAS  PubMed  Google Scholar 

  15. Karathanassis, D. et al. Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 21, 5057–5068 (2002).

    Article  CAS  Google Scholar 

  16. Tuma, P. L., Stachniak, M. C. & Collins, C. A. Activation of dynamin GTPase by acidic phospholipids and endogenous rat brain vesicles. J. Biol. Chem. 268, 17240–17246 (1993).

    CAS  PubMed  Google Scholar 

  17. Barylko, B. et al. Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides. J. Biol. Chem. 273, 3791–3797 (1998).

    Article  CAS  Google Scholar 

  18. Song, B. D. & Schmid, S. L. A molecular motor or a regulator? Dynamin's in a class of its own. Biochemistry 42, 1369–1376 (2003).

    Article  CAS  Google Scholar 

  19. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001).

    Article  CAS  Google Scholar 

  20. Du, G., Huang, P., Liang, B. T. & Frohman, M. A. Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol. Biol. Cell. 15, 1024–1030 (2004).

    Article  CAS  Google Scholar 

  21. Shen, Y., Xu, L. & Foster, D. A. Role for phospholipase D in receptor-mediated endocytosis. Mol. Cell. Biol. 21, 595–602 (2001).

    Article  CAS  Google Scholar 

  22. Lembach, K. J. Induction of human fibroblast proliferation by epidermal growth factor (EGF): enhancement by an EGF-binding arginine esterase and by ascorbate. Proc. Natl Acad. Sci. USA 73, 183–187 (1976).

    Article  CAS  Google Scholar 

  23. Li, G. et al. Insulin at physiological concentrations selectively activates insulin but not insulin like growth factor (IGF-1) or insulin/IGF-1 hybrid receptors in endothelial cells. Endocrinology 146, 4690–4696 (2005).

    Article  CAS  Google Scholar 

  24. Freyberg, Z., Siddhanta, A. & Shields, D. “Slip, sliding away”: phospholipase D and the Golgi apparatus. Trends Cell Biol. 13, 540–546 (2003).

    Article  CAS  Google Scholar 

  25. Cockcroft, S. Signalling roles of mammalian phospholipase D1 and D2. Cell. Mol. Life. Sci. 58, 1674–1687 (2001).

    Article  CAS  Google Scholar 

  26. Damke, H., Baba, T., Warnock, D. E. & Schmid S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994).

    Article  CAS  Google Scholar 

  27. Kim, J. H., Kim, J. H., Ohba, M., Suh, P. G. & Ryu, S. H. Novel functions of the phospholipase D2-Phox homology domain in protein kinase Cζ activation. Mol. Cell. Biol. 25, 3194–3208 (2005).

    Article  CAS  Google Scholar 

  28. Robinson, P., J. et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminal. Nature 365, 163–166 (1993).

    Article  CAS  Google Scholar 

  29. Kim, Y., et al. Phosphorylation and activation of phospholipase D1 by protein kinase C in vivo: determination of multiple phosphorylation sites. Biochemistry 38, 10344–1035 (1999).

    Article  CAS  Google Scholar 

  30. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the 21st Frontier Functional Proteomics Research (M102KM010001–03K1301–00710) and by the Ministry of Science and Technology (MOST) through the Systems Bio-Dynamics Research Center in the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung H. Ryu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 522 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., Kim, I., Park, J. et al. The phox homology domain of phospholipase D activates dynamin GTPase activity and accelerates EGFR endocytosis. Nat Cell Biol 8, 477–484 (2006). https://doi.org/10.1038/ncb1401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ncb1401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing