Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Linear chromosome maintenance in the absence of essential telomere-capping proteins

Abstract

Telomeres were defined by their ability to cap chromosome ends1,2. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3′ single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast3,4,5. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die6,7,8. Cdc13 has a separate, critical role in telomerase recruitment to telomeres9,10. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth of cdc13-1 mutants at 36 °C.
Figure 2: Temperature-resistant cdc13-1 strains show altered telomeric DNA patterns.
Figure 3: Temperature-resistant cdc13-1 cells divide in the absence of Rad52-dependent recombination.
Figure 4: CDC13 is not essential for chromosome maintenance.
Figure 5: Telomeric DNA in the absence of Cdc13 and Stn1.

Similar content being viewed by others

References

  1. Muller, H. J. The remaking of chromosomes. The Collecting Net 13, 181–198 (1938).

    Google Scholar 

  2. McClintock, B. The stability of broken ends of chromsomes in Zea mays. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lei, M., Podell, E. R. & Cech, T. R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nature Struct. Mol. Biol. 11, 1223–1229 (2004).

    Article  CAS  Google Scholar 

  4. Mitton-Fry, R. M., Anderson, E. M., Theobald, D. L., Glustrom, L. W. & Wuttke, D. S. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J. Mol. Biol. 338, 241–255 (2004).

    Article  CAS  Google Scholar 

  5. Theobald, D. L., Cervantes, R. B., Lundblad, V. & Wuttke, D. S. Homology among telomeric end-protection proteins. Structure 11, 1049–1050 (2003).

    Article  CAS  Google Scholar 

  6. Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128–6138 (1995).

    Article  CAS  Google Scholar 

  7. Lydall, D. & Weinert, T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270, 1488–1491 (1995).

    Article  CAS  Google Scholar 

  8. Zubko, M. K., Guillard, S. & Lydall, D. Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 168, 103–115 (2004).

    Article  CAS  Google Scholar 

  9. Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  Google Scholar 

  10. Evans, S. K. & Lundblad, V. Est1 and Cdc13 as comediators of telomerase access. Science 286, 117–120 (1999).

    Article  CAS  Google Scholar 

  11. Gardner, R. G., Nelson, Z. W. & Gottschling, D. E. Degradation-mediated protein quality control in the nucleus. Cell 120, 803–815 (2005).

    Article  CAS  Google Scholar 

  12. Maringele, L. & Lydall, D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Δ mutants. Genes Dev. 16, 1919–1933 (2002).

    Article  CAS  Google Scholar 

  13. Downey, M. et al. A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell 124, 1155–1168 (2006).

    Article  CAS  Google Scholar 

  14. Grandin, N., Damon, C. & Charbonneau, M. Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination. EMBO J. 20, 6127–6139 (2001).

    Article  CAS  Google Scholar 

  15. Teng, S. C. & Zakian, V. A. Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083–8093 (1999).

    Article  CAS  Google Scholar 

  16. Lundblad, V. & Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1 senescence. Cell 73, 347–360 (1993).

    Article  CAS  Google Scholar 

  17. Maringele, L. & Lydall, D. EXO1 plays a role in generating type I and type II survivors in budding yeast. Genetics 166, 1641–1649 (2004).

    Article  CAS  Google Scholar 

  18. Maringele, L. & Lydall, D. Telomerase- and recombination-independent immortalization of budding yeast. Genes Dev. 18, 2663–2675 (2004).

    Article  CAS  Google Scholar 

  19. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  Google Scholar 

  20. Liti, G. & Louis, E. J. NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol. Cell 11, 1373–1378 (2003).

    Article  CAS  Google Scholar 

  21. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).

    Article  CAS  Google Scholar 

  22. Bertuch, A. A. & Lundblad, V. EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. Genetics 166, 1651–1659 (2004).

    Article  CAS  Google Scholar 

  23. Lin, J., Smith, D. L. & Blackburn, E. H. Mutant telomere sequences lead to impaired chromosome separation and a unique checkpoint response. Mol. Biol. Cell 15, 1623–1634 (2004).

    Article  CAS  Google Scholar 

  24. d'Adda di Fagagna, F., Teo, S. H. & Jackson, S. P. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev. 18, 1781–1799 (2004).

    Article  Google Scholar 

  25. Ferreira, M. G., Miller, K. M. & Cooper, J. P. Indecent exposure: when telomeres become uncapped. Mol. Cell 13, 7–18 (2004).

    Article  CAS  Google Scholar 

  26. Abad, J. P. et al. Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. Mol. Biol. Evol. 21, 1613–1619 (2004).

    Article  CAS  Google Scholar 

  27. Maringele, L. & Lydall, D. The PAL-mechanism of chromosome maintenance: causes and consequences. Cell Cycle 4, 747–751 (2005).

    Article  CAS  Google Scholar 

  28. Reddel, R. R. Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett. 194, 155–162 (2003).

    Article  CAS  Google Scholar 

  29. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  30. Maringele, L. & Lydall, D. in Yeast Protocols: Methods in Cell and Molecular Biology, 2nd edn (ed. Xiao, W.) 65–73 (Humana Press, Totowa, 2006).

    Google Scholar 

Download references

Acknowledgements

We thank all members of our lab for input, particularly S. Foster for providing a CDC15 probe, and T. Kirkwood, L. Maringele, C. Nugent, G. Sareztki, R. Wellinger and T. von Zglinicki for comments on the manuscript. We are grateful to C. Nugent and R. Wellinger for communicating data before publication. This work was supported by the Wellcome Trust (Grant numbers 054371and 075294).

Author information

Authors and Affiliations

Authors

Contributions

M.Z. performed all experiments and made the initial observation that cdc13-1 mutants could grow at 36 °C. M.Z. and D.L. designed subsequent experiments. D.L. wrote the bulk of the paper.

Corresponding author

Correspondence to David Lydall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, Supplementary Tables S1, S2, S3 and Supplementary Data (PDF 877 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubko, M., Lydall, D. Linear chromosome maintenance in the absence of essential telomere-capping proteins. Nat Cell Biol 8, 734–740 (2006). https://doi.org/10.1038/ncb1428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ncb1428

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing