Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A water-mediated allosteric network governs activation of Aurora kinase A

Abstract

The catalytic activity of many protein kinases is controlled by conformational changes of a conserved Asp-Phe-Gly (DFG) motif. We used an infrared probe to track the DFG motif of the mitotic kinase Aurora A (AurA) and found that allosteric activation by the spindle-associated protein Tpx2 involves an equilibrium shift toward the active DFG-in state. Förster resonance energy transfer experiments show that the activation loop undergoes a nanometer-scale movement that is tightly coupled to the DFG equilibrium. Tpx2 further activates AurA by stabilizing a water-mediated allosteric network that links the C-helix to the active site through an unusual polar residue in the regulatory spine. The polar spine residue and water network of AurA are essential for phosphorylation-driven activation, but an alternative form of the water network found in related kinases can support Tpx2-driven activation, suggesting that variations in the water-mediated hydrogen bond network mediate regulatory diversification in protein kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tpx2 induces a population shift toward the DFG-in state.
Figure 2: Tpx2 promotes a nanometer-scale shift of the activation loop.
Figure 3: The Q185 spine residue participates in a water-mediated allosteric network.
Figure 4: The Q185 residue is essential for allosteric activation of AurA.
Figure 5: A PKA-like water network supports activation of AurA by Tpx2, but not by phosphorylation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hunter, T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225–236 (1995).

    CAS  PubMed  Google Scholar 

  2. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    CAS  PubMed  Google Scholar 

  3. Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Daley, G.Q., Van Etten, R.A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247, 824–830 (1990).

    CAS  PubMed  Google Scholar 

  5. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    CAS  PubMed  Google Scholar 

  6. Glover, D.M., Leibowitz, M.H., McLean, D.A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105 (1995).

    CAS  PubMed  Google Scholar 

  7. Zorba, A. et al. Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. eLife 3, e02667 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Dodson, C.A., Yeoh, S., Haq, T. & Bayliss, R. A kinetic test characterizes kinase intramolecular and intermolecular autophosphorylation mechanisms. Sci. Signal. 6, ra54 (2013).

    PubMed  Google Scholar 

  9. Seki, A., Coppinger, J.A., Jang, C.Y., Yates, J.R. & Fang, G. Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Macůrek, L. et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455, 119–123 (2008).

    PubMed  Google Scholar 

  11. Kufer, T.A. et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol. 158, 617–623 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Eyers, P.A., Erikson, E., Chen, L.G. & Maller, J.L. A novel mechanism for activation of the protein kinase Aurora A. Curr. Biol. 13, 691–697 (2003).

    CAS  PubMed  Google Scholar 

  13. Toya, M., Terasawa, M., Nagata, K., Iida, Y. & Sugimoto, A. A kinase-independent role for Aurora A in the assembly of mitotic spindle microtubules in Caenorhabditis elegans embryos. Nat. Cell Biol. 13, 708–714 (2011).

    PubMed  Google Scholar 

  14. Zeng, K., Bastos, R.N., Barr, F.A. & Gruneberg, U. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J. Cell Biol. 191, 1315–1332 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hammond, D. et al. Melanoma-associated mutations in protein phosphatase 6 cause chromosome instability and DNA damage owing to dysregulated Aurora-A. J. Cell Sci. 126, 3429–3440 (2013).

    CAS  PubMed  Google Scholar 

  16. Gold, H.L. et al. PP6C hotspot mutations in melanoma display sensitivity to Aurora kinase inhibition. Mol. Cancer Res. 12, 433–439 (2014).

    CAS  PubMed  Google Scholar 

  17. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kornev, A.P., Haste, N.M., Taylor, S.S. & Eyck, L.F. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc. Natl. Acad. Sci. USA 103, 17783–17788 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kornev, A.P., Taylor, S.S. & Ten Eyck, L.F. A helix scaffold for the assembly of active protein kinases. Proc. Natl. Acad. Sci. USA 105, 14377–14382 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hubbard, S.R., Wei, L., Ellis, L. & Hendrickson, W.A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    CAS  PubMed  Google Scholar 

  21. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    CAS  PubMed  Google Scholar 

  22. Martin, M.P. et al. A novel mechanism by which small molecule inhibitors induce the DFG flip in Aurora A. ACS Chem. Biol. 7, 698–706 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dodson, C.A. et al. Crystal structure of an Aurora-A mutant that mimics Aurora-B bound to MLN8054: insights into selectivity and drug design. Biochem. J. 427, 19–28 (2010).

    CAS  PubMed  Google Scholar 

  24. Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12, 851–862 (2003).

    CAS  PubMed  Google Scholar 

  25. Nowakowski, J. et al. Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure 10, 1659–1667 (2002).

    CAS  PubMed  Google Scholar 

  26. Lawrence, H.R. et al. Development of o-chlorophenyl substituted pyrimidines as exceptionally potent aurora kinase inhibitors. J. Med. Chem. 55, 7392–7416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dodson, C.A. & Bayliss, R. Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic. J. Biol. Chem. 287, 1150–1157 (2012).

    CAS  PubMed  Google Scholar 

  28. Anderson, K. et al. Binding of TPX2 to Aurora A alters substrate and inhibitor interactions. Biochemistry 46, 10287–10295 (2007).

    CAS  PubMed  Google Scholar 

  29. Levinson, N.M. & Boxer, S.G. A conserved water-mediated hydrogen bond network defines bosutinib's kinase selectivity. Nat. Chem. Biol. 10, 127–132 (2014).

    CAS  PubMed  Google Scholar 

  30. Fafarman, A.T., Webb, L.J., Chuang, J.I. & Boxer, S.G. Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins. J. Am. Chem. Soc. 128, 13356–13357 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Suydam, I.T. & Boxer, S.G. Vibrational Stark effects calibrate the sensitivity of vibrational probes for electric fields in proteins. Biochemistry 42, 12050–12055 (2003).

    CAS  PubMed  Google Scholar 

  32. Suydam, I.T., Snow, C.D., Pande, V.S. & Boxer, S.G. Electric fields at the active site of an enzyme: direct comparison of experiment with theory. Science 313, 200–204 (2006).

    CAS  PubMed  Google Scholar 

  33. Fafarman, A.T., Sigala, P.A., Herschlag, D. & Boxer, S.G. Decomposition of vibrational shifts of nitriles into electrostatic and hydrogen-bonding effects. J. Am. Chem. Soc. 132, 12811–12813 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Choi, J.H., Oh, K.I., Lee, H., Lee, C. & Cho, M. Nitrile and thiocyanate IR probes: quantum chemistry calculation studies and multivariate least-square fitting analysis. J. Chem. Phys. 128, 134506 (2008).

    PubMed  Google Scholar 

  35. Burgess, S.G. et al. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain. Open Biol. 6, 160089 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Heron, N.M. et al. SAR and inhibitor complex structure determination of a novel class of potent and specific Aurora kinase inhibitors. Bioorg. Med. Chem. Lett. 16, 1320–1323 (2006).

    CAS  PubMed  Google Scholar 

  37. Wu, J.M. et al. Aurora kinase inhibitors reveal mechanisms of HURP in nucleation of centrosomal and kinetochore microtubules. Proc. Natl. Acad. Sci. USA 110, E1779–E1787 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Levinson, N.M. et al. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol. 4, e144 (2006).

    PubMed  PubMed Central  Google Scholar 

  39. Carrera, A.C., Alexandrov, K. & Roberts, T.M. The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP. Proc. Natl. Acad. Sci. USA 90, 442–446 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Meharena, H.S. et al. Deciphering the structural basis of eukaryotic protein kinase regulation. PLoS Biol. 11, e1001680 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Azam, M., Seeliger, M.A., Gray, N.S., Kuriyan, J. & Daley, G.Q. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat. Struct. Mol. Biol. 15, 1109–1118 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Madhusudan, A., Akamine, P., Xuong, N.H. & Taylor, S.S. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 9, 273–277 (2002).

    CAS  PubMed  Google Scholar 

  43. Teeter, M.M. Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin. Proc. Natl. Acad. Sci. USA 81, 6014–6018 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rahman, A. & Stillinger, F.H. Hydrogen-bond patterns in liquid water. J. Am. Chem. Soc. 95, 7943–7948 (1973).

    CAS  Google Scholar 

  45. Batkin, M., Schvartz, I. & Shaltiel, S. Snapping of the carboxyl terminal tail of the catalytic subunit of PKA onto its core: characterization of the sites by mutagenesis. Biochemistry 39, 5366–5373 (2000).

    CAS  PubMed  Google Scholar 

  46. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    CAS  PubMed  Google Scholar 

  47. Unbekandt, M. et al. A novel small-molecule MRCK inhibitor blocks cancer cell invasion. Cell Commun. Signal. 12, 54 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    CAS  PubMed  Google Scholar 

  49. Sligar, S.G. & Gunsalus, I.C. A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase. Proc. Natl. Acad. Sci. USA 73, 1078–1082 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kannan, N. & Neuwald, A.F. Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J. Mol. Biol. 351, 956–972 (2005).

    CAS  PubMed  Google Scholar 

  51. Eaton, G., Pena-Nunez, A.S. & Symons, M.C.R. Solvation of cyanoalkanes [CH3CN and (CH3)3CCN]. An infrared and nuclear magnetic resonance study. J. Chem. Soc. Faraday Trans. 1 84, 2181–2193 (1988).

    CAS  Google Scholar 

  52. Dale, R.E., Eisinger, J. & Blumberg, W.E. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 26, 161–193 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Eastman, P. et al. OpenMM 4: A reusable, extensible, hardware independent library for high performance molecular simulation. J. Chem. Theory Comput. 9, 461–469 (2013).

    CAS  PubMed  Google Scholar 

  54. Marcou, G. & Rognan, D. Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J. Chem. Inf. Model. 47, 195–207 (2007).

    CAS  PubMed  Google Scholar 

  55. McGibbon, R.T. et al. MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950–1958. http://dx.doi.org/10.1002/prot.22711 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Meagher, K.L., Redman, L.T. & Carlson, H.A. Development of polyphosphate parameters for use with the AMBER force field. J. Comput. Chem. 24, 1016–1025 (2003).

    CAS  PubMed  Google Scholar 

  58. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  PubMed  Google Scholar 

  59. Chodera, J.D., Swope, W.C., Pitera, J.W., Seok, C. & Dill, K.A. Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J. Chem. Theory Comput. 3, 26–41 (2007).

    CAS  PubMed  Google Scholar 

  60. Shirts, M.R. & Chodera, J.D. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 129, 124105 (2008).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Conti (Max Planck Institute of Biochemistry, Martinsried) for providing the DNA construct encoding WT human AurA. We thank R. Frontiera for helpful discussions and advice on fitting infrared spectra, and J. Muretta for many fruitful discussions and advice on fluorescence spectroscopy. We thank T. Freedman and W. Gordon for helpful discussions and critical reading of the manuscript. This work was funded in part by grants from the National Institutes of Health (R00 GM102288, N.M.L.). J.D.C. acknowledges support from the Sloan Kettering Institute and NIH grant P30 CA008748. The authors are grateful to the Folding@home donors who participated in this project.

Author information

Authors and Affiliations

Authors

Contributions

N.M.L. conceived and designed the project. S.C. performed the kinase activity assays and thermal shift assays, and S.C. and N.M.L. performed the infrared spectroscopy experiments. E.F.R. performed the fluorescence experiments. J.D.C., and J.M.B. conceived and performed the molecular dynamics simulations and analysis. N.M.L. and J.D.C. wrote the manuscript.

Corresponding author

Correspondence to Nicholas M Levinson.

Ethics declarations

Competing interests

J.D.C. is a member of the Scientific Advisory Board for Schrödinger, LLC.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–9. (PDF 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyphers, S., Ruff, E., Behr, J. et al. A water-mediated allosteric network governs activation of Aurora kinase A. Nat Chem Biol 13, 402–408 (2017). https://doi.org/10.1038/nchembio.2296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nchembio.2296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing