Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptides induce persistent signaling from endosomes by a nutrient transceptor

Abstract

The yeast Gap1 transceptor mediates amino acid activation of the protein kinase A pathway and undergoes endocytic internalization following amino acid transport. We identified three specific γ-glutamyl dipeptides that cause persistent cyclic AMP–independent activation of protein kinase A, prevent Gap1 vacuolar sorting and cause Gap1 accumulation in endosomes. To our knowledge, these are the first examples of persistent agonists of a transceptor. In yeast mutants blocked in multivesicular body sorting, L-citrulline mimicked persistent signaling, further supporting that the internalized Gap1 transceptor keeps signaling. Unexpectedly, these dipeptides were transported by Gap1 and not by the regular dipeptide transporters. Their uptake was unusually sensitive to external pH and caused transient intracellular acidification. High external pH, NHA1 deletion or V-ATPase inhibition overcame the vacuolar sorting defect. Hence, this work has identified specific dipeptides that cause enhanced proton influx through the Gap1 symporter, resulting in its defective vacuolar sorting, and independently transform it into a persistently signaling transceptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major Gap1-dependent phenotypes associated with the addition of specific γ-glutamyl dipeptides to nitrogen-starved cells.
Figure 2: Persistent γ-glutamyl dipeptides induce Gap1-dependent intracellular acidification.
Figure 3: Strong pH dependence for activation of PKA targets, Gap1-mediated transport and defects in Gap1 vacuolar sorting by γ-glutamyl dipeptides.
Figure 4: Deletion of NHA1, which increased cytosolic pH, improved vacuolar sorting of Gap1 and abolished cytosol acidification and cAMP accumulation by γ-glutamyl dipeptides but not persistent PKA signaling.
Figure 5: Deletion of selected genes responsible for Gap1 MVB sorting mimics persistent PKA signaling with regular amino acids independently of Gap1 recycling.

Similar content being viewed by others

References

  1. Forsberg, H. & Ljungdahl, P.O. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet. 40, 91–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Rubio-Texeira, M., Van Zeebroeck, G., Voordeckers, K. & Thevelein, J.M. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res. 10, 134–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Holsbeeks, I., Lagatie, O., Van Nuland, A., Van de Velde, S. & Thevelein, J.M. The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem. Sci. 29, 556–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Donaton, M.C. et al. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 50, 911–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Van Zeebroeck, G., Bonini, B.M., Versele, M. & Thevelein, J.M. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor. Nat. Chem. Biol. 5, 45–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Jauniaux, J.C. & Grenson, M. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur. J. Biochem. 190, 39–44 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Lauwers, E., Erpapazoglou, Z., Haguenauer-Tsapis, R. & Andre, B. The ubiquitin code of yeast permease trafficking. Trends Cell Biol. 20, 196–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Kriel, J., Haesendonckx, S., Rubio-Texeira, M., Van Zeebroeck, G. & Thevelein, J.M. From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. Bioessays 33, 870–879 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thevelein, J.M. Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol. Microbiol. 5, 1301–1307 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Hirimburegama, K. et al. Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J. Gen. Microbiol. 138, 2035–2043 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Durnez, P. et al. Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins. Yeast 10, 1049–1064 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Grenson, M., Hou, C. & Crabeel, M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J. Bacteriol. 103, 770–777 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hauser, M., Narita, V., Donhardt, A.M., Naider, F. & Becker, J.M. Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae. Mol. Membr. Biol. 18, 105–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Hauser, M., Donhardt, A.M., Barnes, D., Naider, F. & Becker, J.M. Enkephalins are transported by a novel eukaryotic peptide uptake system. J. Biol. Chem. 275, 3037–3041 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Cai, H., Hauser, M., Naider, F. & Becker, J.M. Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae. Eukaryot. Cell 6, 1805–1813 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Didion, T., Regenberg, B., Jorgensen, M.U., Kielland-Brandt, M.C. & Andersen, H.A. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol. Microbiol. 27, 643–650 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Wiles, A.M., Cai, H., Naider, F. & Becker, J.M. Nutrient regulation of oligopeptide transport in Saccharomyces cerevisiae. Microbiology 152, 3133–3145 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Vida, T.A. & Emr, S.D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128, 779–792 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Hicke, L. & Riezman, H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287 (1996).

    Article  CAS  Google Scholar 

  20. Davis, N.G., Horecka, J.L. & Sprague, G.F. Jr. Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122, 53–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Galan, J.M., Moreau, V., Andre, B., Volland, C. & Haguenauer-Tsapis, R. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271, 10946–10952 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lundh, F. et al. Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry 48, 4497–4505 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Beck, T., Schmidt, A. & Hall, M.N. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J. Cell Biol. 146, 1227–1238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Piper, R.C., Cooper, A.A., Yang, H. & Stevens, T.H. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J. Cell Biol. 131, 603–617 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Lafourcade, C., Galan, J.M., Gloor, Y., Haguenauer-Tsapis, R. & Peter, M. The GTPase-activating enzyme Gyp1p is required for recycling of internalized membrane material by inactivation of the Rab/Ypt GTPase Ypt1p. Mol. Cell. Biol. 24, 3815–3826 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rubio-Texeira, M. & Kaiser, C.A. Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. Mol. Biol. Cell 17, 3031–3050 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Proszynski, T.J. et al. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc. Natl. Acad. Sci. USA 102, 17981–17986 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Markgraf, D.F. et al. The CORVET subunit Vps8 cooperates with the Rab5 homolog Vps21 to induce clustering of late endosomal compartments. Mol. Biol. Cell 20, 5276–5289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soetens, O., De Craene, J.O. & Andre, B. Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J. Biol. Chem. 276, 43949–43957 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Dupré, S. & Haguenauer-Tsapis, R. Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol. Cell. Biol. 21, 4482–4494 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kneen, M., Farinas, J., Li, Y. & Verkman, A.S. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74, 1591–1599 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  PubMed  Google Scholar 

  33. Maresová, L., Hoskova, B., Urbankova, E., Chaloupka, R. & Sychrova, H. New applications of pHluorin—measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast 27, 317–325 (2010).

    PubMed  Google Scholar 

  34. Trevillyan, J.M. & Pall, M.L. Control of cyclic adenosine 3′,5′-monophosphate levels by depolarizing agents in fungi. J. Bacteriol. 138, 397–403 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Thevelein, J.M. et al. Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: intracellular pH and the effect of membrane depolarizing compounds. J. Gen. Microbiol. 133, 2191–2196 (1987).

    CAS  PubMed  Google Scholar 

  36. Thevelein, J.M. & Beullens, M. Cyclic AMP and the stimulation of trehalase activity in the yeast Saccharomyces cerevisiae by carbon sources, nitrogen sources and inhibitors of protein synthesis. J. Gen. Microbiol. 131, 3199–3209 (1985).

    CAS  PubMed  Google Scholar 

  37. Ariño, J., Ramos, J. & Sychrova, H. Alkali metal cation transport and homeostasis in yeasts. Microbiol. Mol. Biol. Rev. 74, 95–120 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sychrová, H., Ramirez, J. & Pena, A. Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 171, 167–172 (1999).

    Article  PubMed  Google Scholar 

  39. Brett, C.L., Tukaye, D.N., Mukherjee, S. & Rao, R. The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol. Biol. Cell 16, 1396–1405 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nikko, E., Marini, A.M. & Andre, B. Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway. J. Biol. Chem. 278, 50732–50743 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Helliwell, S.B., Losko, S. & Kaiser, C.A. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J. Cell Biol. 153, 649–662 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hopkins, P., Shaw, R., Acik, L., Oliver, S. & Eddy, A.A. Fluorocytosine causes uncoupled dissipation of the proton gradient and behaves as an imperfect substrate of the yeast cytosine permease. Yeast 8, 1053–1064 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Rajagopalan, S. Endosomal signaling and a novel pathway defined by the natural killer receptor KIR2DL4 (CD158d). Traffic 11, 1381–1390 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Roberg, K.J., Rowley, N. & Kaiser, C.A. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J. Cell Biol. 137, 1469–1482 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, E.J. & Kaiser, C.A. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 99, 14837–14842 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Colombo, S. et al. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J. 17, 3326–3341 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would specially like to thank H. Sychrova and members of her laboratory, L. Maresova and O. Kinclova-Zimmermanova for their help and guidance in the intracellular pH measurements. We thank W. Verheyden and R. Wicik for technical help with the experiments, N. Vangoethem for help with preparation of the figures and V. Diaz for helping us with organochemistry calculations and concepts. We would also like to thank all researchers that have kindly provided us with strains, plasmids and antibodies from their laboratories (mentioned in Supplementary Tables 1 and 2). This work was supported by an European Commission–Marie Curie fellowship to M.R.-T., by Fonds Wetenschappelijk Onderzoek visiting and postdoctoral fellowships to M.R.-T. and G.V.Z. and by grants from the Fund for Scientific Research–Flanders, Interuniversity Attraction Poles Network P6/14, the Research Fund of the KU Leuven (Concerted Research Actions) and the Hercules Foundation (Flanders).

Author information

Authors and Affiliations

Authors

Contributions

G.V.Z. and M.R.-T. performed the experimental work and contributed with J.M.T. to the design and discussion of the experimental work and the writing of the paper.

Corresponding author

Correspondence to Johan M Thevelein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 17351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio-Texeira, M., Van Zeebroeck, G. & Thevelein, J. Peptides induce persistent signaling from endosomes by a nutrient transceptor. Nat Chem Biol 8, 400–408 (2012). https://doi.org/10.1038/nchembio.910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nchembio.910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing