Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies

A Retraction to this article was published on 01 September 2009

Abstract

Idiopathic generalized epilepsy (IGE) is an inherited neurological disorder affecting about 0.4% of the world's population. Mutations in ten genes causing distinct forms of idiopathic epilepsy have been identified so far1,2,3,4,5,6,7, but the genetic basis of many IGE subtypes is still unknown. Here we report a gene associated with the four most common IGE subtypes: childhood and juvenile absence epilepsy (CAE and JAE), juvenile myoclonic epilepsy (JME), and epilepsy with grand mal seizures on awakening (EGMA; ref. 8). We identified three different heterozygous mutations in the chloride-channel gene CLCN2 in three unrelated families with IGE. These mutations result in (i) a premature stop codon (M200fsX231), (ii) an atypical splicing (del74–117) and (iii) a single amino-acid substitution (G715E). All mutations produce functional alterations that provide distinct explanations for their pathogenic phenotypes. M200fsX231 and del74–117 cause a loss of function of ClC-2 channels and are expected to lower the transmembrane chloride gradient essential for GABAergic inhibition. G715E alters voltage-dependent gating, which may cause membrane depolarization and hyperexcitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Segregation analysis of three different mutations in CLCN2 in families with common IGE subtypes.
Figure 2: Detection of three different mutations in CLCN2 in families with common IGE subtypes.
Figure 3: Gating of wild-type ClC-2 channels depends on the membrane potential and on [Cl]i.
Figure 4: M200fsX231 and del74–117 cause a loss of function of homo- and heterodimeric mutant channels.
Figure 5: Non-functional mutants are inserted into the cell membrane.
Figure 6: The G715E mutation alters the chloride dependence of ClC-2 gating.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Steinlein, O.K. & Noebels J.L. Ion channels and epilepsy in man and mouse. Curr. Opin. Genet. Dev. 10, 286–291 (2000).

    Article  CAS  Google Scholar 

  2. Berkovic, S.F. & Scheffer, I.E. Genetics of the epilepsies. Epilepsia 42, Suppl 5 16–23 (2001).

    Article  Google Scholar 

  3. Lerche, H., Jurkat-Rott, K. & Lehmann-Horn, F. Ion channels and epilepsy. Am. J. Med. Genet. 106, 146–159 (2001).

    Article  CAS  Google Scholar 

  4. Baulac, S. et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat. Genet. 28, 46–48 (2001).

    CAS  PubMed  Google Scholar 

  5. Wallace, R.H. et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat. Genet. 28, 49–52 (2001).

    CAS  PubMed  Google Scholar 

  6. Kalachikov, S. et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat. Genet. 30, 335–341 (2002).

    Article  Google Scholar 

  7. Cossette, P. et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat. Genet. 31, 184–189 (2002).

    Article  CAS  Google Scholar 

  8. Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30, 389–399 (1989).

  9. Sander, T. et al. Genome search for susceptibility loci of common idiopathic generalized epilepsies. Hum. Mol. Genet. 9, 1465–1472 (2000).

    Article  CAS  Google Scholar 

  10. Thiemann, A., Gründer, S., Pusch, M. & Jentsch, T.J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356, 57–60 (1992).

    Article  CAS  Google Scholar 

  11. Cid, L.P., Montrose-Rafizadeh, C., Smith, D.I., Guggino, W.B. & Cutting, G.R. Cloning of a putative human voltage-gated chloride channel (ClC-2) cDNA widely expressed in human tissues. Hum. Mol. Genet. 4, 407–413 (1995).

    Article  CAS  Google Scholar 

  12. Sik, A., Smith, R.L. & Freund, T.F. Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience 101, 51–65 (2000).

    Article  CAS  Google Scholar 

  13. Staley, K.J. The role of an inwardly rectifying chloride conductance in postsynaptic inhibition. J. Neurophysiol. 72, 273–284 (1994).

    Article  CAS  Google Scholar 

  14. Mladinic, M., Becchetti, A., Didelon, F., Bradbury, A. & Cherubini, E. Low expression of the ClC-2 chloride channel during postnatal development: a mechanism for the paradoxical depolarizing action of GABA and glycine in the hippocampus. Proc. R. Soc. Lond. B Biol. Sci. 266, 1207–1213 (1999).

    Article  CAS  Google Scholar 

  15. Staley, K.J., Smith, R., Schaack, J., Wilcox, C. & Jentsch, T.J. Alteration of GABAA receptor function following gene transfer of the ClC-2 chloride channel. Neuron 17, 543–551 (1996).

    Article  CAS  Google Scholar 

  16. Fahlke, C., Yu, H.T., Beck, C.L., Rhodes, T.H. & George, A.L. Jr. Pore-forming segments in voltage-gated chloride channels. Nature 390, 529–532 (1997).

    Article  CAS  Google Scholar 

  17. Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    Article  CAS  Google Scholar 

  18. Miller, C. Open-state substructure of single chloride channels from Torpedo electroplax. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299, 401–411 (1982).

    Article  CAS  Google Scholar 

  19. Thompson, S.M. & Gähwiller, B.H. Activity-dependent disinhibition II: Effects of extracellular potassium, furosemide, and membrane potential on ECl in hippocampal CA3 neurons. J. Neurophysiol. 61, 512–523 (1989).

    Article  CAS  Google Scholar 

  20. Misgeld, U., Deisz, R.A., Dodt, H.U. & Lux, H.D. The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232, 1413–1415 (1986).

    Article  CAS  Google Scholar 

  21. Rivera, C. et al. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).

    Article  CAS  Google Scholar 

  22. Kaila, K., Lamsa, K., Smirnov, S., Taira, T. & Voipio, J. Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J. Neurosci. 17, 7662–7672 (1997).

    Article  CAS  Google Scholar 

  23. Payne, J.A. Functional characterization of the neuronal-specific K–Cl cotransporter: implications for [K+]o regulation. Am. J. Physiol. 273, C1516–C1525 (1997).

    Article  CAS  Google Scholar 

  24. Bösl, M.R. et al. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl channel disruption. EMBO J. 20, 1289–1299 (2001).

    Article  Google Scholar 

  25. Ross, S.A. et al. Phenotypic characterization of an α4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse. J. Neurosci. 20, 6431–6441 (2000).

    Article  CAS  Google Scholar 

  26. Labarca, C. et al. Point mutant mice with hypersensitive α4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc. Natl. Acad. Sci. USA 98, 2786–2791 (2001).

    Article  CAS  Google Scholar 

  27. Serratosa, J.M. Idiopathic epilepsies with a complex mode of inheritance. Epilepsia 40, 12–16 (1999)

    Article  Google Scholar 

  28. Ma, D. et al. Role of ER export signals in controlling surface potassium channel numbers. Science 291, 316–319 (2001).

    Article  CAS  Google Scholar 

  29. Fahlke, C., Knittle, T., Gurnett, C.A., Campbell, K.P. & George, A.L. Jr. Subunit stoichiometry of human muscle chloride channels. J. Gen. Physiol. 109, 93–104 (1997).

    Article  CAS  Google Scholar 

  30. Cui, J., Cox, D.H. & Aldrich, R.W. Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca2+-activated K+ channels. J. Gen. Physiol. 109, 647–673 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all affected individuals and their families who participated in this study; H. Beck, F. Lehmann-Horn, J.P. Johnson and A. Ryan for discussion on the manuscript; P.C. Heinrich for support; and G. Cutting for providing the pBKRSV-hClC-2 construct. This work was supported by the German Volkswagen-Stiftung (to A.H.), the Deutsche Forschungs-Gemeinschaft (to A.H., C.F., H.L. & T.S.), the German Bundesministerium für Bildung und Forschung (to A.H. & H.L.), the Stiftung Michael (to T.S.), BONFOR (to A.H.) and the Muscular Dystrophy Association (to C.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Holger Lerche or Armin Heils.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haug, K., Warnstedt, M., Alekov, A. et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 33, 527–532 (2003). https://doi.org/10.1038/ng1121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing