Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice

Abstract

The p53 protein integrates multiple upstream signals and functions as a tumor suppressor by activating distinct downstream genes1,2,3. At the cellular level, p53 induces apoptosis, cell cycle arrest and senescence. A rare mutant form of p53 with the amino acid substitution R175P, found in human tumors, is completely defective in initiating apoptosis but still induces cell cycle arrest4,5. To decipher the functional importance of these pathways in spontaneous tumorigenesis, we used homologous recombination to generate mice with mutant p53-R172P (the mouse equivalent of R175P in humans). Mice inheriting two copies of this mutation (Trp53515C/515C) escape the early onset of thymic lymphomas that characterize Trp53-null mice. At 7 months of age, 90% of Trp53-null mice had died, but 85% of Trp53515C/515C mice were alive and tumor-free, indicating that p53-dependent apoptosis was not required for suppression of early onset of spontaneous tumors. The lymphomas and sarcomas that eventually developed in Trp53515C/515C mice retained a diploid chromosome number, in sharp contrast to aneuploidy observed in tumors and cells from Trp53-null mice. The ability of mutant p53-R172P to induce a partial cell cycle arrest and retain chromosome stability are crucial for suppression of early onset tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Trp53515C/515C mice.
Figure 2: Trp53515C/515C MEFs retained a partial cell cycle checkpoint after γ-radiation.
Figure 3: Trp53515C/515C cells lack p53-dependent apoptosis.
Figure 4: The Trp53515C/515C mutant suppresses early onset tumorigenesis.
Figure 5: Trp53515C/515C cells maintain chromosome stability.

Similar content being viewed by others

References

  1. Ko, L.J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  Google Scholar 

  2. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  3. Vogelstein, B., Lane, D. & Levine, A.J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  4. Rowan, S. et al. Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J. 15, 827–838 (1996).

    Article  CAS  Google Scholar 

  5. Ludwig, R.L., Bates, S. & Vousden, K.H. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol. Cell. Biol. 16, 4952–4960 (1996).

    Article  CAS  Google Scholar 

  6. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).

    Article  CAS  Google Scholar 

  7. el-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  8. Lowe, S.W., Jacks, T., Housman, D.E. & Ruley, H.E. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc. Natl. Acad. Sci. USA 91, 2026–2030 (1994).

    Article  CAS  Google Scholar 

  9. Soengas, M.S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159 (1999).

    Article  CAS  Google Scholar 

  10. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  Google Scholar 

  11. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways [see comments]. Nature 362, 849–852 (1993).

    Article  CAS  Google Scholar 

  12. Lee, Y., Chong, M.J. & McKinnon, P.J. Ataxia telangiectasia mutated-dependent apoptosis after genotoxic stress in the developing nervous system is determined by cellular differentiation status. J. Neurosci. 21, 6687–6693 (2001).

    Article  CAS  Google Scholar 

  13. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  14. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  Google Scholar 

  15. Nacht, M. & Jacks, T. V(D)J recombination is not required for the development of lymphoma in Trp53-deficient mice. Cell Growth Differ. 9, 131–138 (1998).

    CAS  PubMed  Google Scholar 

  16. Harvey, M. et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8, 2457–2467 (1993).

    CAS  PubMed  Google Scholar 

  17. Venkatachalam, S. et al. Retention of wild-type Trp53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J. 17, 4657–4667 (1998).

    Article  CAS  Google Scholar 

  18. Liao, M.J. et al. No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Mol. Cell. Biol. 18, 3495–3501 (1998).

    Article  CAS  Google Scholar 

  19. Hundley, J.E. et al. Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol. Cell. Biol. 17, 723–731 (1997).

    Article  CAS  Google Scholar 

  20. Tarapore, P. & Fukasawa, K. Loss of p53 and centrosome hyperamplification. Oncogene 21, 6234–6240 (2002).

    Article  CAS  Google Scholar 

  21. Tlsty, T.D. Regulation of genomic instability in preneoplastic cells. Cancer Surv. 28, 217–224 (1996).

    CAS  PubMed  Google Scholar 

  22. Donehower, L.A. Genetic instability in animal tumorigenesis models. Cancer Surv. 29, 329–352 (1997).

    CAS  PubMed  Google Scholar 

  23. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  Google Scholar 

  24. Tarapore, P., Horn, H.F., Tokuyama, Y. & Fukasawa, K. Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene 20, 3173–3184 (2001).

    Article  CAS  Google Scholar 

  25. Schmitt, C.A. et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289–298 (2002).

    Article  CAS  Google Scholar 

  26. Symonds, H. et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78, 703–711 (1994).

    Article  CAS  Google Scholar 

  27. Kinzler, K.W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761–763 (1997).

    Article  CAS  Google Scholar 

  28. Liu, G. et al. High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc. Natl. Acad. Sci. USA 97, 4174–4179 (2000).

    Article  CAS  Google Scholar 

  29. Lakso, M. et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6232–6236 (1992).

    Article  CAS  Google Scholar 

  30. Kapoor, M. & Lozano, G. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc. Natl. Acad. Sci. USA 95, 2834–2837 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Lowe and P. Nolan for reagents and K. Ramirez for assistance with FACS analysis. This work was supported by grants from the US National Cancer Institute and The Kadoorie Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermina Lozano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Parant, J., Lang, G. et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36, 63–68 (2004). https://doi.org/10.1038/ng1282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing