Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer

Abstract

Cytogenetic aberrations have been reported in 45,000 human neoplasms. Structural balanced rearrangements are associated with distinct tumor subtypes with remarkable specificity and have been essential for identifying genes involved in tumorigenesis1,2. All balanced rearrangements that have been characterized molecularly act by deregulating a gene in one of the breakpoints or by creating a fusion gene3,4,5,6. Because most recurrent aberrations and rearranged genes have been found in hematological disorders, whereas numerous genomic imbalances have been identified in solid tumors7,8, it has become generally accepted that there are pathogenetic differences between these neoplasms. We here show that in every tumor type, the numbers of recurrent balanced chromosome abnormalities, fusion genes and genes rearranged as a consequence of balanced aberrations are simply a function of the number of cases with an abnormal karyotype. Hence, there may not be any fundamental tissue-specific differences in the genetic mechanisms by which neoplasia is initiated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Numbers of recurrent balanced chromosomal aberrations, fusion genes and rearranged genes as a consequence of balanced cytogenetic abnormalities in relation to number of reported cases with an abnormal karyotype in tumors of each type.

Similar content being viewed by others

References

  1. Heim, S. & Mitelman, F. Cancer Cytogenetics 2nd edn. (Wiley-Liss, New York, 1995).

    Google Scholar 

  2. Mitelman, F., Mertens, F. & Johansson, B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat. Genet. 15, 417–474 (1997).

    Article  CAS  Google Scholar 

  3. Rabbitts, T.H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  CAS  Google Scholar 

  4. Look, A.T. Oncogenic transcription factors in human acute leukemias. Science 278, 1059–1064 (1997).

    Article  CAS  Google Scholar 

  5. Rowley, J.D. Chromosomal translocations: dangerous liaisons revisited. Nat. Rev. Cancer 1, 245–250 (2001).

    Article  CAS  Google Scholar 

  6. Helman, L.J. & Meltzer, P. Mechanisms of sarcoma development. Nat. Rev. Cancer 3, 685–694 (2003).

    Article  CAS  Google Scholar 

  7. Mertens, F., Johansson, B., Höglund, M. & Mitelman, F. Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res. 57, 2765–2780 (1997).

    CAS  PubMed  Google Scholar 

  8. Albertson, D.G., Collins, C., McCormick, F. & Gray, J.W. Chromosome aberrations in solid tumors. Nat. Genet. 34, 369–376 (2003).

    Article  CAS  Google Scholar 

  9. Eguchi, M. et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93, 1355–1363 (1999).

    CAS  PubMed  Google Scholar 

  10. Knezevich, S.R., McFadden, D.E., Tao, W., Lim, J.F. & Sorensen, P.H.B. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet. 18, 184–187 (1998).

    Article  CAS  Google Scholar 

  11. Rubin, B.P. et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion. Cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am. J. Pathol. 153, 1451–1458 (1998).

    Article  CAS  Google Scholar 

  12. Tognon, C. et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2, 367–376 (2002).

    Article  CAS  Google Scholar 

  13. Nowell, P.C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  Google Scholar 

  14. Hanahan, D. & Weinberg R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  15. Loeb, L.A., Loeb, K.R. & Anderson, J.P. Multiple mutations and cancer. Proc. Natl. Acad. Sci. USA 100, 776–781 (2003).

    Article  CAS  Google Scholar 

  16. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  Google Scholar 

  17. Nowak, M.A. et al. The role of chromosomal instability in tumor initiation. Proc. Natl. Acad. Sci. USA 99, 16226–16231 (2002).

    Article  CAS  Google Scholar 

  18. Sieber, O.M., Heinimann, K. & Tomlinson, I.P.M. Genomic instability – the engine of tumorigenesis? Nat. Rev. Cancer 3, 701–708 (2003).

    Article  CAS  Google Scholar 

  19. Knudson, A.G. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1, 157–170 (2001).

    Article  CAS  Google Scholar 

  20. Lengauer, C. How do tumors make ends? Proc. Natl. Acad. Sci. USA 98, 12331–12333 (2001).

    Article  CAS  Google Scholar 

  21. Heim, S., Mandahl, N. & Mitelman, F. Genetic convergence and divergence in tumor progression. Cancer Res. 48, 5911–5916 (1988).

    CAS  PubMed  Google Scholar 

  22. Gorunova, L. et al. Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer 23, 81–99 (1998).

    Article  CAS  Google Scholar 

  23. Romana, S.P. et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85, 3662–3670 (1995).

    CAS  PubMed  Google Scholar 

  24. Golub, T.R. et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92, 4917–4921 (1995).

    Article  CAS  Google Scholar 

  25. Druker, B.J. Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene 21, 8541–8546 (2002).

    Article  CAS  Google Scholar 

  26. Rabbitts, T.H. & Stocks, M.R. Chromosomal translocation products engender new intracellular therapeutic technologies. Nat. Med. 9, 383–386 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Cancer Society and the Swedish Children's Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Mitelman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitelman, F., Johansson, B. & Mertens, F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet 36, 331–334 (2004). https://doi.org/10.1038/ng1335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing