Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease

Abstract

Huntington disease is one of nine inherited neurodegenerative disorders caused by a polyglutamine tract expansion. Expanded polyglutamine proteins accumulate abnormally in intracellular aggregates. Here we show that mammalian target of rapamycin (mTOR) is sequestered in polyglutamine aggregates in cell models, transgenic mice and human brains. Sequestration of mTOR impairs its kinase activity and induces autophagy, a key clearance pathway for mutant huntingtin fragments. This protects against polyglutamine toxicity, as the specific mTOR inhibitor rapamycin attenuates huntingtin accumulation and cell death in cell models of Huntington disease, and inhibition of autophagy has the converse effects. Furthermore, rapamycin protects against neurodegeneration in a fly model of Huntington disease, and the rapamycin analog CCI-779 improved performance on four different behavioral tasks and decreased aggregate formation in a mouse model of Huntington disease. Our data provide proof-of-principle for the potential of inducing autophagy to treat Huntington disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mTOR is sequestered in mutant huntingtin aggregates in cell models, transgenic mice and human brain.
Figure 2: Reduced levels of soluble mTOR and impaired mTOR-dependent phosphorylation of its substrates S6K1 and 4E-BP1 in Huntington disease.
Figure 3: Impaired phosphorylation of ribosomal protein S6 and dysregulation of TOP-dependent translation.
Figure 4: Polyglutamine expansion induces autophagy.
Figure 5: mTOR activity regulates polyglutamine toxicity in cells and flies.
Figure 6: CCI-779 improves behavior and motor performance in a mouse model of Huntington disease16.
Figure 7: CCI-779 reduces weight gain in mice.
Figure 8: CCI-779 reduces mTOR activity and aggregate load in mice expressing mutant huntingtin.

Similar content being viewed by others

References

  1. Rubinsztein, D.C. Lessons from animal models of Huntington's disease. Trends Genet. 18, 202–209 (2002).

    Article  CAS  Google Scholar 

  2. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  3. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  Google Scholar 

  4. Gutekunst, C.A. et al. Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J. Neurosci. 19, 2522–2534 (1999).

    Article  CAS  Google Scholar 

  5. Dunah, A.W. et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 296, 2238–2243 (2002).

    Article  CAS  Google Scholar 

  6. La Spada, A.R. & Taylor, J.P. Polyglutamines placed into context. Neuron 38, 681–684 (2003).

    Article  CAS  Google Scholar 

  7. Chai, Y., Wu, L., Griffin, J.D. & Paulson, H.L. The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J. Biol. Chem. 276, 44889–44897 (2001).

    Article  CAS  Google Scholar 

  8. Ravikumar, B., Duden, R. & Rubinsztein, D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    Article  CAS  Google Scholar 

  9. Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N. & Rubinsztein, D.C. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    Article  CAS  Google Scholar 

  10. Schmelzle, T. & Hall, M.N. TOR, a central controller of cell growth. Cell 103, 253–262 (2000).

    Article  CAS  Google Scholar 

  11. Huang, S., Bjornsti, M.A. & Houghton, P.J. Rapamycins: mechanism of action and cellular resistance. Cancer. Biol. Ther. 2, 222–232 (2003).

    Article  CAS  Google Scholar 

  12. Serkova, N. et al. Sirolimus, but not the structurally related RAD (everolimus), enhances the negative effects of cyclosporine on mitochondrial metabolism in the rat brain. Br. J. Pharmacol. 133, 875–885 (2001).

    Article  CAS  Google Scholar 

  13. Supko, J.G. & Malspeis, L. Dose-dependent pharmacokinetics of rapamycin-28-n-n-dimethylglycinate in the mouse. Cancer Chemother. Pharmacol. 33, 325–330 (1994).

    Article  CAS  Google Scholar 

  14. Kwon, C.-H., Zhu, X., Zhang, J. & Baker, S.J. mTOR is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc. Natl. Acad. Sci. USA 100, 12923–12928 (2003).

    Article  CAS  Google Scholar 

  15. Wyttenbach, A. et al. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc. Natl. Acad. Sci. USA 97, 2898–2903 (2000).

    Article  CAS  Google Scholar 

  16. Schilling, G. et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8, 397–407 (1999).

    Article  CAS  Google Scholar 

  17. Waelter, S. et al. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell 12, 1393–1407 (2001).

    Article  CAS  Google Scholar 

  18. Kim, J.E. & Chen, J. Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc. Natl. Acad. Sci. USA 97, 14340–14345 (2000).

    Article  CAS  Google Scholar 

  19. Fingar, D.C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472–1487 (2002).

    Article  CAS  Google Scholar 

  20. Wyttenbach, A. et al. Polyglutamine expansions cause decreased CRE-mediated transcription and early gene expression changes prior to cell death in an inducible cell model of Huntington's disease. Hum. Mol. Genet. 10, 1829–1845 (2001).

    Article  CAS  Google Scholar 

  21. Kim, D.H. et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895–904 (2003).

    Article  CAS  Google Scholar 

  22. Schwab, M.S. et al. p70(S6K) controls selective mRNA translation during oocyte maturation and early embryogenesis in Xenopus laevis. Mol. Cell. Biol. 19, 2485–2494 (1999).

    Article  CAS  Google Scholar 

  23. Kegel, K.B. et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 20, 7268–7278 (2000).

    Article  CAS  Google Scholar 

  24. Sapp, E. et al. Huntingtin localization in brains of normal and Huntington's disease patients. Ann. Neurol. 42, 604–612 (1997).

    Article  CAS  Google Scholar 

  25. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  26. Hennig, K.M. & Neufeld, T.P. Inhibition of cellular growth and proliferation by dTOR overexpression in Drosophila. Genesis 34, 107–110 (2002).

    Article  CAS  Google Scholar 

  27. Manning, B.D. & Cantley, L.C. Rheb fills a GAP between TSC and TOR. Trends Biochem. Sci. 28, 573–576 (2003).

    Article  CAS  Google Scholar 

  28. Jackson, G.R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642 (1998).

    Article  CAS  Google Scholar 

  29. Franceschini, N. & Kirschfeld, K. Pseudopupil phenomena in the compound eye of drosophila. Kybernetik 9, 159–182 (1971).

    Article  CAS  Google Scholar 

  30. Zhang, H., Stallock, J.P., Ng, J.C., Reinhard, C. & Neufeld, T.P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14, 2712–2724 (2000).

    Article  CAS  Google Scholar 

  31. Huang, S. & Houghton, P.J. Mechanisms of resistance to rapamycins. Drug Resist. Update 4, 378–391 (2001).

    Article  CAS  Google Scholar 

  32. Elit, L. CCI-779 Wyeth. Curr. Opin. Investig. Drugs 3, 1249–1253 (2002).

    CAS  PubMed  Google Scholar 

  33. Mangiarini L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  Google Scholar 

  34. Lione, L.A. et al. Selective discrimination learning impairments in mice expressing the human Huntington's disease mutation. J. Neurosci. 19, 10428–10437 (1999).

    Article  CAS  Google Scholar 

  35. Sathasivam, K. et al. Formation of polyglutamine inclusions in non-CNS tissue. Hum. Mol. Genet. 8, 813–822 (1999).

    Article  CAS  Google Scholar 

  36. Rogers, D.C. et al. Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm. Genome 8, 711–3 (1997).

    Article  CAS  Google Scholar 

  37. Walpoth, B.H. et al. Prevention of neointimal proliferation by immunosuppression in synthetic vascular grafts. Eur. J. Cardiothorac. Surg. 19, 487–492 (2001).

    Article  CAS  Google Scholar 

  38. British Medical Association and Royal Pharmaceutical Society of Great Britain. British National Formulary 4 (2003).

  39. Kuemmerle, S. et al. Huntington aggregates may not predict neuronal death in Huntington's disease. Ann. Neurol. 46, 842–849 (1999).

    Article  CAS  Google Scholar 

  40. Mizushima, N., Ohsumi, Y. & Yoshimori, T. Autophagosome formation in Mammalian cells. Cell Struct. Funct. 27, 421–429 (2002).

    Article  Google Scholar 

  41. Gingras, A.C., Raught, B. & Sonenberg, N. Control of translation by the target of rapamycin proteins. Prog. Mol. Subcell. Biol. 27, 143–174 (2001).

    Article  CAS  Google Scholar 

  42. Usdin, M.T., Shelbourne, P.F., Myers, R.M. & Madison, D.V. Impaired synaptic plasticity in mice carrying the Huntington's disease mutation. Hum. Mol. Genet. 8, 839–846 (1999).

    Article  CAS  Google Scholar 

  43. Murphy, K.P. et al. Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation. J. Neurosci. 20, 5115–5123 (2000).

    Article  CAS  Google Scholar 

  44. Yoo, S.Y. et al. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 37, 383–401 (2003).

    Article  CAS  Google Scholar 

  45. Tang, S.J. et al. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. USA 99, 467–472 (2002).

    Article  CAS  Google Scholar 

  46. Steffan, J.S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001).

    Article  CAS  Google Scholar 

  47. Ferrante, R.J. et al. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's Disease. J. Neurosci. 22, 1592–1599 (2002).

    Article  CAS  Google Scholar 

  48. Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA 100, 2041–2046 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Wyeth Pharmaceuticals for the gift of CCI-779; G. Jackson for the fly model of Huntington disease; E. J. L. Maller and J. Chen for control and TOP luciferase vectors; N. Khan for brain samples from humans with Huntington disease and controls; A. Tobin for Gln25 and Gln103 constructs; H. Zoghbi for the ataxin constructs; W. J. Strittmatter for Gln19 and Gln81 constructs; K. L. Guan for rheb and FLAG-4E-BP1 constructs; T. Yoshimori for the antibody to LC3; A. Acevedo and E. Terrenoire for help with mouse brain samples; R. Padinjat for help with pseudopupil illumination; and M. Bobrow, D. Clayton and J. D. Cooper for helpful suggestions. We acknowledge funding from the Commonwealth Scholarship Commission for Ph.D. scholarship (B.R.), the Wellcome Trust for a Senior Clinical Research Fellowship (D.C.R.), a Senior Fellowship in Basic Biomedical Science (R.D.), a Prize Studentship (Z.B.), The Cambridge Overseas Trust (Z.B.), The Biotechnology and Biological Sciences Research Council for a Career Development Award (C.J.O.) and a Medical Research Council programme grant to D.C.R and S. Brown.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C Rubinsztein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, B., Vacher, C., Berger, Z. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36, 585–595 (2004). https://doi.org/10.1038/ng1362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing