Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Essential role of Plzf in maintenance of spermatogonial stem cells

Abstract

Little is known of the molecular mechanisms whereby spermatogonia, mitotic germ cells of the testis, self-renew and differentiate into sperm1,2. Here we show that Zfp145, encoding the transcriptional repressor Plzf, has a crucial role in spermatogenesis. Zfp145 expression was restricted to gonocytes and undifferentiated spermatogonia and was absent in tubules of W/Wv mutants that lack these cells. Mice lacking Zfp145 underwent a progressive loss of spermatogonia with age, associated with increases in apoptosis and subsequent loss of tubule structure but without overt differentiation defects or loss of the supporting Sertoli cells. Spermatogonial transplantation experiments revealed a depletion of spermatogonial stem cells in the adult. Microarray analysis of isolated spermatogonia from Zfp145-null mice before testis degeneration showed alterations in the expression profile of genes associated with spermatogenesis. These results identify Plzf as a spermatogonia-specific transcription factor in the testis that is required to regulate self-renewal and maintenance of the stem cell pool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Zfp145 in the developing testis.
Figure 2: Mice with a targeted disruption of Zfp145 show testis atrophy.
Figure 3: Proliferation and apoptosis in the developing testis of Zfp145+/+ and Zfp145−/− mice.
Figure 4: Zfp145−/− spermatogonia are unable to repopulate germ cell–depleted recipient testis.
Figure 5: Microarray analysis of gene expression in purified spermatogonia from Zfp145+/+ and Zfp145−/− mice.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. McLaren, A. Germ and somatic cell lineages in the developing gonad. Mol. Cell. Endocrinol. 163, 3–9 (2000).

    Article  CAS  Google Scholar 

  2. de Rooij, D.G. Proliferation and differentiation of spermatogonial stem cells. Reproduction 121, 347–354 (2001).

    Article  CAS  Google Scholar 

  3. Costoya, J.A. & Pandolfi P.P. The role of promyelocytic leukemia zinc finger and promyelocytic leukemia in leukemogenesis and development. Curr. Opin. Hematol. 8, 212–217 (2001).

    Article  CAS  Google Scholar 

  4. Barna, M. et al. Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev. Cell. 3, 499–510 (2002).

    Article  CAS  Google Scholar 

  5. Cook, M. et al. Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain. Proc. Natl. Acad. Sci. USA 92, 2249–2253 (1995).

    Article  CAS  Google Scholar 

  6. Barna, M., Hawe, N., Niswander, L. & Pandolfi, P.P. Plzf regulates limb and axial skeletal patterning. Nat. Genet. 25, 166–172 (2000).

    Article  CAS  Google Scholar 

  7. Shaknovich, R. et al. The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol. Cell. Biol. 18, 5533–5545 (1998).

    Article  CAS  Google Scholar 

  8. Coulombre, J.L. & Russell, E.S. Analysis of the pleiotropism at the W locus in the mouse: The effects of W and Wv substitution upon postnatal development of germ cells. J. Exp. Zool. 126, 277–296 (1954).

    Article  Google Scholar 

  9. Beumer, T.L., Roepers-Gajadien, H.L., Gademan, I.S., Kal, H.B. & de Rooij, D.G. Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse. Biol. Reprod. 63, 1893–1898 (2000).

    Article  CAS  Google Scholar 

  10. Wrobel, K.H., Bickel, D. & Kujat, R. Immunohistochemical study of seminiferous epithelium in adult bovine testis using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen (PCNA). Cell Tissue Res. 283, 191–201 (1996).

    Article  CAS  Google Scholar 

  11. Beumer, T.L. et al. Regulatory role of p27kip1 in the mouse and human testis. Endocrinology. 140, 1834–1840 (1999).

    Article  CAS  Google Scholar 

  12. Narula, A. et al. Smad4 overexpression causes germ cell ablation and leydig cell hyperplasia in transgenic mice. Am. J. Pathol. 161, 1723–1734 (2002).

    Article  CAS  Google Scholar 

  13. Handel, M.A., Cobb, J. & Eaker, S. What are the spermatocyte's requirements for successful meiotic division? J. Exp. Zool. 285, 243–250 (1999).

    Article  CAS  Google Scholar 

  14. Gown, A.M. & Willingham, M.C. Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J. Histochem. Cytochem. 50, 449–454 (2002).

    Article  CAS  Google Scholar 

  15. Brinster, R.L. & Zimmermann, J.W. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA 91, 11298–11302 (1994).

    Article  CAS  Google Scholar 

  16. Brinster, R.L. & Avarbock, M.R. Germline transmission of donor haplotype following spermatogonial transplantation. Proc. Natl. Acad. Sci. USA 91, 11303–11307 (1994).

    Article  CAS  Google Scholar 

  17. Orwig, K.E., Shinohara, T., Avarbock, M.R. & Brinster, R.L. Functional analysis of stem cells in the adult rat testis. Biol. Reprod. 66, 944–949 (2002).

    Article  CAS  Google Scholar 

  18. Yeyati, P.L. et al. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 18, 925–934 (1999).

    Article  CAS  Google Scholar 

  19. McConnell, M.J. et al. Growth suppression by Acute Promyelocytic Leukemia-Associated protein PLZF is mediated by repression of c-myc expression. Mol. Cell. Biol. 23, 9375–9388 (2003).

    Article  CAS  Google Scholar 

  20. Venables, J.P. & Eperon, I. The roles of RNA-binding proteins in spermatogenesis and male infertility. Curr. Opin. Genet. 9, 346–354 (1999).

    Article  CAS  Google Scholar 

  21. Andersson, S. Molecular genetics of androgenic 17 beta-hydroxysteroid dehydrogenases. J. Steroid. Biochem. Mol. Biol. 55, 533–534 (1995).

    Article  CAS  Google Scholar 

  22. Scott, K.L. & Plon, S.E. Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 4522–4531 (2003).

    Article  CAS  Google Scholar 

  23. Inoue, N. et al. New gene family defined by MORC, a nuclear protein required for mouse spermatogenesis. Hum. Mol. Genet. 8, 1201–1207 (1999).

    Article  CAS  Google Scholar 

  24. Cunningham, D.B., Segretain, D., Arnaud, D., Rogner, U.C. & Avner, P. The mouse Tsx gene is expressed in Sertoli cells of the adult testis and transiently in premeiotic germ cells during puberty. Dev. Biol. 204, 345–360 (1998).

    Article  CAS  Google Scholar 

  25. Labbaye, C. et al. PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein. Oncogene 21, 6669–6679 (2002).

    Article  CAS  Google Scholar 

  26. Buaas, F.W. et al. ZFP145 is required in adult male germ cells for stem cell self-renewal. Nat. Genet. advance online publication, 23 May 2004 (doi:10.1038/ng1366).

  27. Cooke, H.J. & Saunders, P.T. Mouse models of male infertility. Nat. Rev. Genet. 3, 790–801 (2002).

    Article  CAS  Google Scholar 

  28. Manova, K., Nocka, K., Besmer, P. & Bachvarova, R.F. Gonadal expression of c-kit encoded at the W locus of the mouse. Development. 110, 1057–1069 (1990).

    CAS  PubMed  Google Scholar 

  29. Shinohara, T., Orwig, K.E., Avarbock, M.R. & Brinster, R.L. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc. Natl. Acad. Sci. USA 97, 8346–8351 (2000).

    Article  CAS  Google Scholar 

  30. Rajasekhar, V.K. et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol. Cell. 12, 889–901 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Viale for advice and discussion regarding microarray analysis; the Molecular Cytology, Flow-Cytometry, Transgenic and Genomic Core facilities, particularly C. Farrell and R. Lester, for technical assistance; E. Pikarsky and X. Wang for providing material; and the members of the laboratory of M.A.D. -B. and P.E. Cohen for discussion. This work is supported by National Center for Research Resources grant, grants from the US National Institutes of Health (to K.E.O. and M.S. and to D.J.W.) and a grant from the National Cancer Institute (to P.P.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costoya, J., Hobbs, R., Barna, M. et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36, 653–659 (2004). https://doi.org/10.1038/ng1367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing