Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kaposi sarcoma herpesvirus–induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma

Abstract

The biology of Kaposi sarcoma is poorly understood because the dominant cell type in Kaposi sarcoma lesions is not known1,2,3,4. We show by gene expression microarrays that neoplastic cells of Kaposi sarcoma are closely related to lymphatic endothelial cells (LECs) and that Kaposi sarcoma herpesvirus (KSHV)5,6 infects both LECs and blood vascular endothelial cells (BECs) in vitro. The gene expression microarray profiles of infected LECs and BECs show that KSHV induces transcriptional reprogramming of both cell types. The lymphangiogenic molecules VEGF-D and angiopoietin-2 were elevated in the plasma of individuals with acquired immune deficiency syndrome and Kaposi sarcoma. These data show that the gene expression profile of Kaposi sarcoma resembles that of LECs, that KSHV induces a transcriptional drift in both LECs and BECs and that lymphangiogenic molecules are involved in the pathogenesis of Kaposi sarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GEM data for Kaposi sarcoma and cell groups.
Figure 2: Relationships between the Kaposi sarcoma expression signature and cell groups.
Figure 3: Tropism of KSHV.
Figure 4: Reprogramming of LECs and BECs by KSHV.
Figure 5: ELISA of ANG2, VEGF and VEGF-D levels.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Regezi, J.A. et al. Human immunodeficiency virus-associated oral Kaposi's sarcoma. A heterogeneous cell population dominated by spindle-shaped endothelial cells. Am. J. Pathol. 143, 240–249 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaaya, E.E. et al. Heterogeneity of spindle cells in Kaposi's sarcoma: comparison of cells in lesions and in culture. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 10, 295–305 (1995).

    Article  CAS  Google Scholar 

  3. Gallo, R.C. The enigmas of Kaposi's sarcoma. Science 282, 1837–1839 (1998).

    Article  CAS  Google Scholar 

  4. Kahn, H.J., Bailey, D. & Marks, A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi's sarcoma and a subset of angiosarcomas. Mod. Pathol. 15, 434–440 (2002).

    Article  Google Scholar 

  5. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869 (1994).

    Article  CAS  Google Scholar 

  6. Boshoff, C. & Weiss, R. AIDS-related malignancies. Nat. Rev. Cancer 2, 373–382 (2002).

    Article  CAS  Google Scholar 

  7. Ganem, D. KSHV and Kaposi's sarcoma: the end of the beginning? Cell 91, 157–160 (1997).

    Article  CAS  Google Scholar 

  8. Dupin, N. et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl. Acad. Sci. USA 96, 4546–4551 (1999).

    Article  CAS  Google Scholar 

  9. Stacker, S.A., Achen, M.G., Jussila, L., Baldwin, M.E. & Alitalo, K. Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2, 573–583 (2002).

    Article  CAS  Google Scholar 

  10. Flore, O. et al. Transformation of primary human endothelial cells by Kaposi's sarcoma- associated herpesvirus. Nature 394, 588–592 (1998).

    Article  CAS  Google Scholar 

  11. Moses, A.V. et al. Long-term infection and transformation of dermal microvascular endothelial. J. Virol. 73, 6892–6902 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ciufo, D.M. et al. Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J. Virol. 75, 5614–5626 (2001).

    Article  CAS  Google Scholar 

  13. Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  Google Scholar 

  14. Lebbe, C. et al. Characterization of in vitro culture of HIV-negative Kaposi's sarcoma-derived cells. In vitro responses to alfa interferon. Arch. Dermatol. Res. 289, 421–428 (1997).

    Article  CAS  Google Scholar 

  15. Samaniego, F., Markham, P.D., Gendelman, R., Gallo, R.C. & Ensoli, B. Inflammatory cytokines induce endothelial cells to produce and release basic fibroblast growth factor and to promote Kaposi's sarcoma-like lesions in nude mice. J. Immunol. 158, 1887–1894 (1997).

    CAS  Google Scholar 

  16. Brockmeyer, N.H. et al. Cytokine profile of HIV-positive Kaposi's sarcoma derived cells in vitro. Eur. J. Med. Res. 4, 95–100 (1999).

    CAS  PubMed  Google Scholar 

  17. Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4273 (2001).

    Article  CAS  Google Scholar 

  18. Vieira, J., O'Hearn, P., Kimball, L., Chandran, B. & Corey, L. Activation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J. Virol. 75, 1378–1386 (2001).

    Article  CAS  Google Scholar 

  19. Petrova, T.V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21, 4593–4599 (2002).

    Article  CAS  Google Scholar 

  20. Gale, N.W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell 3, 411–423 (2002).

    Article  CAS  Google Scholar 

  21. Poole, L.J. et al. Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi's sarcoma-associated herpesvirus. J. Virol. 76, 3395–3420 (2002).

    Article  CAS  Google Scholar 

  22. Ferrara, N., Gerber, H.P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  Google Scholar 

  23. Ascherl, G. et al. Infection with human immunodeficiency virus-1 increases expression of vascular endothelial cell growth factor in T cells: implications for acquired immunodeficiency syndrome-associated vasculopathy. Blood 93, 4232–4241 (1999).

    CAS  PubMed  Google Scholar 

  24. Renwick, N. et al. Vascular endothelial growth factor levels in serum do not increase following HIV type 1 and HHV8 seroconversion and lack correlation with AIDS-related Kaposi's sarcoma. AIDS Res. Hum. Retroviruses 18, 695–698 (2002).

    Article  CAS  Google Scholar 

  25. Shin, D. et al. Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev. Biol. 230, 139–150 (2001).

    Article  CAS  Google Scholar 

  26. Hong, Y.-K. et al. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma–associated herpesvirus. Nat. Genet. advance online publication, 27 June 2004 (doi:10.1038/ng1383).

  27. Orenstein, J.M. et al. Visualization of human herpesvirus type 8 in Kaposi's sarcoma by light and transmission electron microscopy. AIDS 11, F35–F45 (1997).

    Article  CAS  Google Scholar 

  28. Irizarry, R.A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, E15 (2003).

    Article  Google Scholar 

  29. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  Google Scholar 

  30. Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the AIDS-Malignancy Bank of the US National Cancer Institute for providing the Kaposi sarcoma biopsy samples used in this study; M. Byers, S. Crane, D. MacDonald, D.B. Guiliano, A. Godfrey and R. Dunbar for technical expertise; J. Vieira for providing the BCBL-1 cell line producing KSHV-GFP; and R. Ambinder for providing the JSC-1 cell line. We apologize to the many scientists whose work we did not cite due to space constraints. This work is supported by Wellcome Trust, European Union, Cancer Research UK and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Boshoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Hierarchical cluster of 35 samples and a filtered set of 5894 genes. (PDF 1860 kb)

Supplementary Fig. 2

Infection of KSHV in LECs and BECs. (PDF 158 kb)

Supplementary Table 1

Gene differentially expressed between KS and normal skin, or between LECs and BECs. (XLS 665 kb)

Supplementary Table 2

Average linkage distances between each sample group. (PDF 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HW., Trotter, M., Lagos, D. et al. Kaposi sarcoma herpesvirus–induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36, 687–693 (2004). https://doi.org/10.1038/ng1384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing