Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation

Abstract

Chromatin insulators demarcate expression domains by blocking the cis effects of enhancers or silencers in a position-dependent manner1,2. We show that the chromatin insulator protein CTCF carries a post-translational modification: poly(ADP-ribosyl)ation. Chromatin immunoprecipitation analysis showed that a poly(ADP-ribosyl)ation mark, which exclusively segregates with the maternal allele of the insulator domain in the H19 imprinting control region, requires the bases that are essential for interaction with CTCF3. Chromatin immunoprecipitation–on–chip analysis documented that the link between CTCF and poly(ADP-ribosyl)ation extended to more than 140 mouse CTCF target sites. An insulator trap assay showed that the insulator function of most of these CTCF target sites is sensitive to 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase activity. We suggest that poly(ADP-ribosyl)ation imparts chromatin insulator properties to CTCF at both imprinted and nonimprinted loci, which has implications for the regulation of expression domains and their demise in pathological lesions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A PAR mark of the H19 ICR is allele-specific and depends on intact CTCF target sites.
Figure 2: CTCF is poly(ADP-ribosyl)ated.
Figure 3: Extensive overlap in the patterns of poly(ADP-ribosyl)ation marks and CTCF occupancy.
Figure 4: The insulator trap assay and 3-ABA sensitivity of chromatin insulator functions.

Similar content being viewed by others

References

  1. Bell, A.C., West, A.G. & Felsenfeld, G. Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291, 447–450 (2001).

    Article  CAS  Google Scholar 

  2. Ohlsson, R., Renkawitz, R. & Lobanenkov, V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 17, 520–527 (2001).

    Article  CAS  Google Scholar 

  3. Kanduri, C. et al. Functional interaction of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10, 853–856 (2000).

    Article  CAS  Google Scholar 

  4. Ziegler, M. & Oei, S.L. A cellular switch: poly(ADP-ribosy)lation stimulates DNA repair and silences transcription. Bioessays 23, 543–548 (2001).

    Article  CAS  Google Scholar 

  5. Smith, S. The world according to PARP. Trends Biochem. Sci. 26, 174–179 (2001).

    Article  CAS  Google Scholar 

  6. Kraus, W. & Lis, J. PARP goes transcription. Cell 113, 677–683 (2003).

    Article  CAS  Google Scholar 

  7. Tulin, A., Stewart, D. & Spradling, A. The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev. 16, 2108–2119 (2002).

    Article  CAS  Google Scholar 

  8. Thorvaldsen, J.L., Duran, K.L. & Bartolomei, M.S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702 (1998).

    Article  CAS  Google Scholar 

  9. Kanduri, C. et al. The 5′-flank of the murine H19 gene in an unusual chromatin conformation unidirectionally blocks enhancer-promoter communication. Curr. Biol. 10, 449–457 (2000).

    Article  CAS  Google Scholar 

  10. Pant, V. et al. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev. 17, 586–590 (2003).

    Article  CAS  Google Scholar 

  11. Yusufzai, T., Tagami, H., Nakatani, Y. & Felsenfeld, G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell 13, 291–298 (2004).

    Article  CAS  Google Scholar 

  12. Mukhopadhyay, R. et al. The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genomewide. Genome Res. 14, 1594–1602 (2004).

    Article  CAS  Google Scholar 

  13. Holmgren, C. et al. CpG methylation regulates the Igf2/H19 insulator. Curr. Biol. 11, 1128–1130 (2001).

    Article  CAS  Google Scholar 

  14. Kanduri, C., Kanduri, M., Thakur, N., Pfeifer, S. & Ohlsson, R. The kinetics of deregulation of expression by de novo methylation of the H19 imprinting control region in cancer cells. Cancer Res. 62, 4545–4548 (2002).

    CAS  PubMed  Google Scholar 

  15. Kanduri, C. et al. A differentially methylated imprinting control region within the Kcnq1 locus harbours a methylation-sensitive chromatin insulator. J. Biol. Chem. 277, 18106–18110 (2002).

    Article  CAS  Google Scholar 

  16. Horike, S. et al. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 9, 2075–2083 (2000).

    Article  CAS  Google Scholar 

  17. Sallmann, F.R., Vodenicharov, M.D., Wang, Z.Q. & Poirier, G.G. Characterization of sPARP-1. An alternative product of PARP-1 gene with poly(ADP-ribose) polymerase activity independent of DNA strand breaks. J. Biol. Chem. 275, 15504–15511 (2000).

    Article  CAS  Google Scholar 

  18. Davidovic, L., Vodenicharov, M., Affar, E. & Poirier, G. Importance of poly(ADP-ribose) glucohydrolase in the control of poly(ADP-ribose) metabolism. Exp. Cell Res. 268, 7–13 (2001).

    Article  CAS  Google Scholar 

  19. Constanzi, C. & Pehrson, J. Histone macroH2A1 is concentrated in the inactive X chromosome in female mammals. Nature 393, 599–601 (1998).

    Article  Google Scholar 

  20. Allen, M., Buckle, A., Cordell, S., Lowe, J. & Bycroft, M. The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J. Mol. Biol. 330, 503–511 (2003).

    Article  CAS  Google Scholar 

  21. Dean, W. et al. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with abberant phenotypes. Development 125, 2273–2282 (1998).

    CAS  PubMed  Google Scholar 

  22. Franklin, G. et al. The human PDGF-B gene is regulated by cell type-specific activator and suppressor elements in the first intron. EMBO J. 10, 1365–1373 (1991).

    Article  CAS  Google Scholar 

  23. Ohlsson, R., Holmgren, L., Glaser, A., Szpecht, A. & Pfeifer-Ohlsson, S. Insulin-like growth factor 2 and short-range stimulatory loops in control of human placental growth. EMBO J. 8, 1993–1999 (1989).

    Article  CAS  Google Scholar 

  24. Li, Y.-M. et al. The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. J. Biol. Chem. 273, 28247–28252 (1998).

    Article  CAS  Google Scholar 

  25. Lynch, C., Tycko, B., Bestor, T. & Walsh, C. Reactivation of a silenced H19 gene in human rhabdomyosarcoma by demethylation of DNA but not histone hyperacetylation. Mol. Cancer. 1, 2 (2002).

    Article  Google Scholar 

  26. Chernukhin, I. et al. Physical and functional interaction between two pluripotent proteins the Y-box DNA/RNA-binding factor, YB-1, and the multivalent zinc finger factor, CTCF. J. Biol. Chem. 275, 29915–29921 (2000).

    Article  CAS  Google Scholar 

  27. Quitschke, W.W., Taheny, M.J., Fochtmann, L.J. & Vostrov, A.A. Differential effect of zinc finger deletions on the binding of CTCF to the promoter of the amyloid precursor protein gene. Nucleic Acids Res. 28, 3370–3378 (2000).

    Article  CAS  Google Scholar 

  28. Miranda, E., Dantzer, F., O'Farrell, M., de Murcia, G. & de Murcia, J. Characterisation of a gain-of-function mutant of poly(ADP-ribose) polymerase. Biochem. Biophys. Res. Commun. 212, 317–325 (1995).

    Article  CAS  Google Scholar 

  29. Kanduri, M. et al. Multiple nucleosome positioning sites regulate the CTCF-mediated insulator function of the H19 imprinting control region. Mol. Cell. Biol. 22, 3339–3344 (2002).

    Article  CAS  Google Scholar 

  30. Klenova, E. et al. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms. Mol. Cell. Biol. 13, 7612–7624 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mattsson for expert technical assistance, H. Smith and M. O'Farrell for help with the in vitro poly(ADP-ribosyl)ation assay, S. Shamsuddin for providing the domains of CTCF expressed in bacterial system, P. Hassa for helpful comments, A. Vostrov and W. Quitschke for the recombinant CTCF from Pichia and A. Isaksson and the Wallenberg microarray platform at the Rudbeck Laboratory for their assistance. This work was supported by the Swedish Science Research Council (V.R., R.O.), the Swedish Cancer Research Foundation (C.F., R.O.), the Swedish Pediatric Cancer Foundation (B.C.F., R.O.), the Lundberg Foundation (R.O.), the Wallenberg Foundation (R.O.), the Juvenile Diabetes Research Foundation International (R.O.), the Breast Cancer Campaign (F.D., E.K.), PhD Studentship from the University of Essex (D.F.), Research Promotion Fund from the University of Essex (I.C., F.D., E.K.) and the Association for International Cancer Research (I.C., E.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Ohlsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, W., Ginjala, V., Pant, V. et al. Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nat Genet 36, 1105–1110 (2004). https://doi.org/10.1038/ng1426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing