Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transcriptomic analysis of the phylum Nematoda

An Author Correction to this article was published on 15 June 2020

Abstract

The phylum Nematoda occupies a huge range of ecological niches, from free-living microbivores to human parasites. We analyzed the genomic biology of the phylum using 265,494 expressed-sequence tag sequences, corresponding to 93,645 putative genes, from 30 species, including 28 parasites. From 35% to 70% of each species' genes had significant similarity to proteins from the model nematode Caenorhabditis elegans. More than half of the putative genes were unique to the phylum, and 23% were unique to the species from which they were derived. We have not yet come close to exhausting the genomic diversity of the phylum. We identified more than 2,600 different known protein domains, some of which had differential abundances between major taxonomic groups of nematodes. We also defined 4,228 nematode-specific protein families from nematode-restricted genes: this class of genes probably underpins species- and higher-level taxonomic disparity. Nematode-specific families are particularly interesting as drug and vaccine targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EST data sets from across the phylum Nematoda.
Figure 2: Gene discovery in nematode EST data sets.
Figure 3: Chromosomal location of C. elegans homologs of other nematode genes.
Figure 4: Comparing partial genomes across the Nematoda.
Figure 5: Evolutionary origins of unique genes and gene families in the phylum Nematoda.
Figure 6: Functional annotation of genes using Gene Ontology terms.

Similar content being viewed by others

References

  1. De Ley, P. & Blaxter, M.L. Systematic position and phylogeny. in The Biology of Nematodes (ed. Lee, D.) 1–30 (Taylor & Francis, London, 2002).

    Google Scholar 

  2. Platt, H.M. Foreword. in The Phylogenetic Systematics of Free-living Nematodes (Lorenzen, S.) (The Ray Society, London, 1994).

    Google Scholar 

  3. Lambshead, P.J.D. Recent developments in marine benthic biodiversity research. Oceanis 19, 5–24 (1993).

    Google Scholar 

  4. Blaxter, M.L. et al. A molecular evolutionary framework for the phylum Nematoda. Nature 392, 71–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Chan, M.-S. The global burden of intestinal nematode infections - fifty years on. Parasitol. Today 13, 438–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Barker, K.R., Hussey, R.S. & Krusberg, L.R. Plant and Soil Nematodes: Societal Impact and Focus on the Future (Committee on National Needs and Priorities in Nematology, Society of Nematologists, Marceline, Missouri, USA, 1994).

    Google Scholar 

  7. The C. elegans Genome Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  8. Wood, W.B. (ed.) The Nematode Caenorhabditis elegans 667 (Cold Spring Harbor Laboratory Press, New York, 1988).

    Google Scholar 

  9. Riddle, D. Blumenthal, T., Meyer, B. & Priess, J. (eds.) C. elegans II 1222 (Cold Spring Harbor Laboratory Press, New York, 1997).

    Google Scholar 

  10. Stein, L.D. et al. The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics. PLoS Biol. 1, E45 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Parkinson, J., Mitreva, M., Hall, N., Blaxter, M. & McCarter, J.P. 400000 nematode ESTs on the Net. Trends Parasitol. 19, 283–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Boguski, M.S., Lowe, T.M. & Tolstoshev, C.M. dbEST - database for “expressed sequence tags”. Nat. Genet. 4, 332–333 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Lizotte-Waniewski, M. et al. Identification of potential vaccine and drug target candidates by expressed sequence tag analysis and immunoscreening of Onchocerca volvulus larval cDNA libraries. Infect. Immun. 68, 3491–3501 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tetteh, K.K., Loukas, A., Tripp, C. & Maizels, R.M. Identification of abundantly expressed novel and conserved genes from the infective larval stage of Toxocara canis by an expressed sequence tag strategy. Infect. Immun. 67, 4771–4779 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daub, J., Loukas, A., Pritchard, D.I. & Blaxter, M. A survey of genes expressed in adults of the human hookworm, Necator americanus. Parasitology 120, 171–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Blaxter, M.L. et al. Genes expressed in Brugia malayi infective third stage larvae. Mol. Biochem. Parasitol. 77, 77–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. McCarter, J.P. et al. Analysis and functional classification of transcripts from the nematode Meloidogyne incognita. Genome Biol. 4, R26 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mitreva, M. et al. Comparative genomics of gene expression in the parasitic and free-living nematodes Strongyloides stercoralis and Caenorhabditis elegans. Genome Res. 14, 209–220 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mitreva, M. et al. Gene discovery in the adenophorean nematode Trichinella spiralis: an analysis of transcription from three life cycle stages. Mol. Biochem. Parasitol. 137, 277–291 (2004).

    Article  PubMed  Google Scholar 

  20. Harcus, Y.M. et al. Signal sequence analysis of expressed sequence tags from the nematode Nippostrongylus brasiliensis and the evolution of secreted proteins in parasites. Genome Biol. 5, R39 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Whitton, C. et al. A genome sequence survey of the filarial nematode Brugia malayi: repeats, gene discovery, and comparative genomics. Mol. Biochem. Parasitol. 137, 215–227 (2004).

    Article  PubMed  Google Scholar 

  22. Parkinson, J., Whitton, C., Schmid, R., Thomson, M. & Blaxter, M. NEMBASE: a resource for parasitic nematode ESTs. Nucleic Acids Res. 32, D427–D430 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wylie, T. et al. Nematode.net: a tool for navigating sequences from parasitic and free-living nematodes. Nucleic Acids Res. 32, D423–D426 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tatusov, R.L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blaxter, M.L. Caenorhabditis elegans is a nematode. Science 282, 2041–2046 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, D.Y., Kumar, S. & Hedges, S.B. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc. R. Soc. Lond. B Biol. Sci. 266, 163–171 (1999).

    Article  CAS  Google Scholar 

  27. Reboul, J. et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat. Genet. 34, 35–41 (2003).

    Article  PubMed  Google Scholar 

  28. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Barnes, T.M., Kohara, Y., Coulson, A. & Hekimi, S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics 141, 159–179 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 1, E12 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gregory, W.F. & Parkinson, J. Caenorhabditis elegans – applications to nematode genomics. Comp. Funct. Genomics 4, 194–202 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parkinson, J. & Blaxter, M.L. SimiTri - visualising similarity relationships for large groups of sequences. Bioinformatics 19, 390–395 (2002).

    Article  CAS  Google Scholar 

  33. Aboobaker, A.A. & Blaxter, M.L. Hox gene loss during dynamic evolution of the nematode cluster. Curr. Biol. 13, 37–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Roy, P.J., Stuart, J.M., Lund, J. & Kim, S.K. Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418, 975–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Enright, A.J., Van Dongen, S. & Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zdobnov, E.M. & Apweiler, R. InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Hutter, H. et al. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287, 989–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Johnstone, I.L. & Barry, J.D. Temporal reiteration of a precise gene expression pattern during nematode development. EMBO J. 15, 3633–3639 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hawdon, J.M., Jones, B.F., Hoffman, D.R. & Hotez, P.J. Cloning and characterization of Ancylostoma-secreted protein. A novel protein associated with the transition to parasitism by infective hookworm larvae. J. Biol. Chem. 271, 6672–6678 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. The Gene Ontology Consortium. Creating the gene ontology resource: design and implementation. Genome Res 11, 1425–1433 (2001).

  41. Blaxter, M. Nematoda: Genes, genomes and the evolution of parasitism. Adv. Parasitol. 54, 102–195 (2003).

    Google Scholar 

  42. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghedin, E., Wang, S., Foster, J.M. & Slatko, B.E. First sequenced genome of a parasitic nematode. Trends Parasitol. 20, 151–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Williams, S.A. et al. The filarial genome project: analysis of the nuclear, mitochondrial and endosymbiont genomes of Brugia malayi. Int. J. Parasitol. 30, 411–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hillier, L.D. et al. Generation and analysis of 280,000 human expressed sequence tags. Genome Res. 6, 807–828 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Whitton, C., Daub, J., Thompson, M. & Blaxter, M. Expressed sequence tags: medium throughput protocols. in Parasite Genomics (ed. Melville, S.E.) (Humana, New York, in the press).

  47. Parkinson, J. et al. PartiGene - constructing partial genomes. Bioinformatics 20, 1398–1404 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Parkinson, J., Guiliano, D. & Blaxter, M. Making sense of EST sequences by CLOBBing them. BMC Bioinf. 3, 31 (2002).

    Article  Google Scholar 

  49. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all our nematology and parasitology colleagues for supplying materials (see Supplementary Methods online) and for their enthusiasm for this project and A. Anthony, J. Wasmuth and A. Hedley for trace2dbest, PartiGene and prot4EST software. The UK arm of the project was funded by the Wellcome Trust, and the US arm by the National Institutes of Health (National Institute of Allergy and Infectious Diseases). J.P.M. was supported by a Helen Hay Whitney/Merck fellowship. Sequencing at The Wellcome Trust Sanger Institute was carried out by C. Churcher, T. Chillingworth, P. Cummings, Z. Hance, K. Jagels, S. Moule and S. Whitehead. Most of the computational analyses were done using facilities at the Center for Computational Biology, Hospital for Sick Children, Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Parkinson.

Ethics declarations

Competing interests

J.P.M. is an employee of and equity holder in Divergence, Inc.

Supplementary information

Supplementary Fig. 1

Novel nematode-specific domains showing high sequence conservation. (PDF 33 kb)

Supplementary Table 1

Polypeptide and domain predictions for nematode species. (PDF 9 kb)

Supplementary Table 2

Most abundant InterPro domains in the nematode partial genomes. (PDF 9 kb)

Supplementary Table 3

Representation of partial genomes in KEGG metabolic pathways. (PDF 9 kb)

Supplementary Methods (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkinson, J., Mitreva, M., Whitton, C. et al. A transcriptomic analysis of the phylum Nematoda. Nat Genet 36, 1259–1267 (2004). https://doi.org/10.1038/ng1472

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng1472

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing