Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells

Abstract

The skin is a highly complex organ interspersed with a variety of smaller organ-like structures and a plethora of cell types that together perform essential functions such as physical sensing, temperature control, barrier maintenance and immunity. In this Review, we outline many of the innate and adaptive immune cell types associated with the skin, focusing on the steady state in mice and men, and include a broad update of dendritic cell function and T cell surveillance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resident microbiota in the skin contribute to immunity and wound repair.
Figure 2: Lymphocytes and DCs of the skin.
Figure 3: Tissue-resident memory T cells in the skin.

Similar content being viewed by others

References

  1. Grice, E.A. & Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cavassani, K.A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat. Med. 15, 1377–1382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Naik, S. et al. Compartmentalized control of skin Immunity by resident commensals. Science 337, 1115–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nestle, F.O., Di Meglio, P., Qin, J.-Z. & Nickoloff, B.J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kubo, A., Nagao, K., Yokouchi, M., Sasaki, H. & Amagai, M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206, 2937–2946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuo, I.-H., Yoshida, T., De Benedetto, A. & Beck, L.A. The cutaneous innate immune response in patients with atopic dermatitis. J. Allergy Clin. Immunol. 131, 266–278 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Brown, S.J. & McLean, W.H.I. One remarkable molecule: filaggrin. J. Invest. Dermatol. 132, 751–762 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Meephansan, J., Tsuda, H., Komine, M., Tominaga, S.-i. & Ohtsuki, M. Regulation of IL-33 expression by IFN-γ and tumor necrosis factor-α in normal human epidermal keratinocytes. J. Invest. Dermatol. 132, 2593–2600 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Nagao, K. et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13, 744–752 (2012).This study provided important insight into production of chemokines by different regions of hair follicles and implicated some of these in the recruitment of monocytes and Langerhans cells into the epidermis. This work raised the idea that hair follicles may act as a gateway to the epidermis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).Described is a non-recirculating form of tissue-resident memory CD8+ T cells, which was the first evidence that these cells could provide local protection against infection.

    Article  CAS  PubMed  Google Scholar 

  13. Clark, R.A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, J. et al. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497, 494–497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacLeod, A.S. & Havran, W.L. Functions of skin-resident γδ T cells. Cell Mol. Life Sci. 68, 2399–2408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maricich, S.M. et al. Merkel cells are essential for light-touch responses. Science 324, 1580–1582 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schneider, M.R., Schmidt-Ullrich, R. & Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol. 19, R132–R142 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Chodaczek, G., Papanna, V., Zal, M.A. & Zal, T. Body-barrier surveillance by epidermal γδ TCRs. Nat. Immunol. 13, 272–282 (2012).This work provided evidence that γδ T cells of the epidermis (referred to as dendritic epidermal T cells or DETCs) are constitutively signaled through their TCR via polarized interactions anchored in epidermal regions associated with tight junctions. These interactions are thought to monitor steady-state integrity of the epidermis. This report also provides some outstanding long-term live imaging of DETCs, showing their dendrite orientation and cellular replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sumaria, N. et al. Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J. Exp. Med. 208, 505–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ye, S.K. et al. Differential roles of cytokine receptors in the development of epidermal gamma delta T cells. J. Immunol. 167, 1929–1934 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. De Creus, A. et al. Developmental and functional defects of thymic and epidermal V gamma 3 cells in IL-15–deficient and IFN regulatory factor-1–deficient mice. J. Immunol. 168, 6486–6493 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Hayday, A.C. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Girardi, M. et al. Regulation of cutaneous malignancy by gammadelta T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Witherden, D.A. et al. The Junctional Adhesion Molecule JAML Is a Costimulatory Receptor for Epithelial T Cell Activation. Science 329, 1205–1210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Witherden, D.A. et al. The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal γδ T cell function. Immunity 37, 314–325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Havran, W.L., Chien, Y.H. & Allison, J.P. Recognition of self antigens by skin-derived T cells with invariant gamma delta antigen receptors. Science 252, 1430–1432 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Jameson, J.M., Cauvi, G., Sharp, L.L., Witherden, D.A. & Havran, W.L. γδ T cell-induced hyaluronan production by epithelial cells regulates inflammation. J. Exp. Med. 201, 1269–1279 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boismenu, R., Feng, L., Xia, Y.Y., Chang, J.C. & Havran, W.L. Chemokine expression by intraepithelial γδ T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J. Immunol. 157, 985–992 (1996).

    CAS  PubMed  Google Scholar 

  32. Matsue, H., Cruz, P.D., Bergstresser, P.R. & Takashima, A. Profiles of cytokine mRNA expressed by dendritic epidermal T cells in mice. J. Invest. Dermatol. 101, 537–542 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Strid, J., Sobolev, O., Zafirova, B., Polic, B. & Hayday, A. The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Science 334, 1293–1297 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Gray, E.E. et al. Deficiency in IL-17–committed Vγ4+ γδ T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14, 584–592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pantelyushin, S. et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cai, Y. et al. Pivotal role of dermal IL-17–producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Philip, N.H. & Artis, D. New friendships and old feuds: relationships between innate lymphoid cells and microbial communities. Immunol. Cell Biol. 91, 225–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, B.S. et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5, 170ra116 (2013).

    Google Scholar 

  39. Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Batista, M.D. et al. Skewed distribution of natural killer cells in psoriasis skin lesions. Exp. Dermatol. 22, 64–66 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ebert, L.M., Meuter, S. & Moser, B. Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J. Immunol. 176, 4331–4336 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Minty, A. et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 362, 248–250 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Cohn, L. et al. Th2-induced airway mucus production is dependent on IL-4Rα, but not on eosinophils. J. Immunol. 162, 6178–6183 (1999).

    CAS  PubMed  Google Scholar 

  45. Pope, S.M. et al. IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. J. Allergy Clin. Immunol. 108, 594–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Segura, E. et al. Differential expression of pathogen-recognition molecules between dendritic cell subsets revealed by plasma membrane proteomic analysis. Mol. Immunol. 47, 1765–1773 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Edwards, A.D. et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33, 827–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Miller, J.C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888–899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Belz, G.T. & Nutt, S.L. Transcriptional programming of the dendritic cell network. Nat. Rev. Immunol. 12, 101–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naik, S.H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).This report shows that CD103+ DCs exist in many tissues, and provides important information about the origin of these DCs and their CD11b+ counterparts in the same tissues, showing the latter are heterogeneous in origin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heath, W.R. & Carbone, F.R. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10, 1237–1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Onai, N. et al. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 38, 943–957 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Jakubzick, C. et al. Blood monocyte subsets differentially give rise to CD103+ and CD103 pulmonary dendritic cell populations. J. Immunol. 180, 3019–3027 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7, 265–273 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Farache, J., Zigmond, E., Shakhar, G. & Jung, S. Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunol. Cell Biol. 91, 232–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Serbina, N.V., Salazar-Mather, T.P., Biron, C.A., Kuziel, W.A. & Pamer, E.G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Wakim, L.M., Waithman, J., van Rooijen, N., Heath, W.R. & Carbone, F.R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Henri, S. et al. Disentangling the complexity of the skin dendritic cell network. Immunol. Cell Biol. 88, 366–375 (2010).

    Article  PubMed  Google Scholar 

  62. Henri, S. et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207, 189–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haniffa, M. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60–73 (2012).This report identifies the human skin counterpart of the mouse CD103+ dermal DCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Poulin, L.F. et al. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J. Exp. Med. 204, 3119–3131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bursch, L.S. et al. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med. 204, 3147–3156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ginhoux, F. et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med. 204, 3133–3146 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shortman, K. & Heath, W.R. The CD8+ dendritic cell subset. Immunol. Rev. 234, 18–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, J.-G. et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36, 646–657 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Ahrens, S. et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36, 635–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10, 488–495 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Persson, E.K. et al. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38, 958–969 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Itano, A.A. & Jenkins, M.K. Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol. 4, 733–739 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. McLachlan, J.B., Catron, D.M., Moon, J.J. & Jenkins, M.K. Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin. Immunity 30, 277–288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ritter, U., Meissner, A., Scheidig, C. & Korner, H. CD8α- and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis. Eur. J. Immunol. 34, 1542–1550 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Guilliams, M. et al. Skin-draining lymph nodes contain dermis-derived CD103 dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood 115, 1958–1968 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF- and retinoic acid dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ouchi, T. et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J. Exp. Med. 208, 2607–2613 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kaplan, D.H. In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 31, 446–451 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Romani, N., Brunner, P.M. & Stingl, G. Changing views of the role of Langerhans cells. J. Invest. Dermatol. 132, 872–881 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Igyarto, B.Z. & Kaplan, D.H. Antigen presentation by Langerhans cells. Curr. Opin. Immunol. 25, 115–119 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Allan, R.S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Kaplan, D.H., Jenison, M.C., Saeland, S., Shlomchik, W.D. & Shlomchik, M.J. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Igyarto, B.Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).This report is one of the first to provide convincing evidence that Langerhans cells have a function in antigen presentation and priming of T cells to infectious agents. It provides evidence that Langerhans cells induce T H 17 cell–mediated immunity to C. albicans . It also shows that Langerin+ (CD103+) DCs are important for T H 1 cell and cytotoxic T cell responses.

    Article  CAS  PubMed  Google Scholar 

  85. Haley, K. et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J. Immunol. 188, 4334–4339 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Shklovskaya, E. et al. Langerhans cells are precommitted to immune tolerance induction. Proc. Natl. Acad. Sci. USA 108, 18049–18054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kautz-Neu, K. et al. Langerhans cells are negative regulators of the anti-Leishmania response. J. Exp. Med. 208, 885–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Seneschal, J., Clark, R.A., Gehad, A., Baecher-Allan, C.M. & Kupper, T.S. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36, 873–884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Villadangos, J.A. & Young, L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29, 352–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Nestle, F.O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 202, 135–143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Banchereau, J., Pascual, V. & Type, I. Interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Di Meglio, P., Perera, G.K. & Nestle, F.O. The multitasking organ: recent insights into skin immune function. Immunity 35, 857–869 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Iezzi, G. et al. Lymph node resident rather than skin-derived dendritic cells initiate specific T cell responses after Leishmania major infection. J. Immunol. 177, 1250–1256 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Itano, A.A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Allan, R.S. et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 199, 731–736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).Provides clear evidence that CD8+ T cells do not form a recirulating memory cell population that traffics through the skin and instead form resident memory cells in the epidermis. This contrasts CD4+ memory T cells, which do form a recirculating population that traffics through the dermis, lymph nodes, spleen and blood. These recirculating CD4+ memory T cells are shown to have skin tropism.

    Article  CAS  PubMed  Google Scholar 

  99. Teijaro, J.R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Anderson, K.G. et al. Cutting Edge: Intravascular Staining Redefines Lung CD8 T Cell Responses. J. Immunol. 189, 2702–2706 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Casey, K.A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Hofmann, M. & Pircher, H. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl. Acad. Sci. USA 108, 16741–16746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schenkel, J.M., Fraser, K.A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).This work shows that tissue-resident memory T cells can recruit circulating memory T cells in response to antigen detection. Thus, the ability of T RM cells to control infection is likely mediated both by their own effector function and their ability to recruit additional circulating effectors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Klonowski, K.D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Mackay, L.K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. USA 109, 7037–7042 (2012).This study was the first to show that T RM cells can be seeded into tissues (skin and vagina) by inflammation and that this can lead to protection against infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wakim, L.M., Woodward-Davis, A. & Bevan, M.J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl. Acad. Sci. USA 107, 17872–17879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Clark, R.A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Science Translational Medicine 4, 117ra117 (2012).This work provides important evidence that human skin may contain non-recirculating T cells, that is, tissue-resident memory T cells, by demonstrating the presence of T cells in skin of patients that have had their circulating T cells depleted by treatment with monoclonal antibody.

    Article  CAS  Google Scholar 

  109. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bromley, S.K., Yan, S., Tomura, M., Kanagawa, O. & Luster, A.D. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J. Immunol. 190, 970–976 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Bromley, S.K., Thomas, S.Y. & Luster, A.D. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6, 895–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Debes, G.F. et al. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6, 889–894 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wald, A. et al. Frequent genital herpes simplex virus 2 shedding in immunocompetent women. Effect of acyclovir treatment. J. Clin. Invest. 99, 1092–1097 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lai, Y. et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J. Invest. Dermatol. 130, 2211–2221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Mueller and A. Zaid for the immunohistology in Figure 2b,c. Supported by the Australian Research Council (W.R.H.) and the National Health and Medical Research Council of Australia (W.R.H. and F.R.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William R Heath or Francis R Carbone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heath, W., Carbone, F. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14, 978–985 (2013). https://doi.org/10.1038/ni.2680

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.2680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing