Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Attenuated Plasmodium yoelii lacking purine nucleoside phosphorylase confer protective immunity

Abstract

Malaria continues to devastate sub-Saharan Africa owing to the emergence of drug resistance to established antimalarials and to the lack of an efficacious vaccine. Plasmodium species have a unique streamlined purine pathway in which the dual specificity enzyme purine nucleoside phosphorylase (PNP) functions in both purine recycling and purine salvage1,2,3,4. To evaluate the importance of PNP in an in vivo model of malaria, we disrupted PyPNP, the gene encoding PNP in the lethal Plasmodium yoelii YM strain. P. yoelii parasites lacking PNP were attenuated and cleared in mice. Although able to form gametocytes, PNP-deficient parasites did not form oocysts in mosquito midguts and were not transmitted from mosquitoes to mice. Mice given PNP-deficient parasites were immune to subsequent challenge to a lethal inoculum of P. yoelii YM and to challenge from P. yoelii 17XNL, another strain. These in vivo studies with PNP-deficient parasites support purine salvage as a target for antimalarials. They also suggest a strategy for the development of attenuated nontransmissible metabolic mutants as blood-stage malaria vaccine strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P.yoelii lacking PNP are attenuated.

Similar content being viewed by others

References

  1. Kicska, G.A. et al. Transition state analogue inhibitors of purine nucleoside phosphorylase from Plasmodium falciparum. J. Biol. Chem. 277, 3219–3225 (2002).

    Article  CAS  Google Scholar 

  2. Kicska, G.A. et al. Purine-less death in Plasmodium falciparum induced by immucillin-H, a transition state analogue of purine nucleoside phosphorylase. J. Biol. Chem. 277, 3226–3231 (2002).

    Article  CAS  Google Scholar 

  3. Shi, W. et al. Plasmodium falciparum purine nucleoside phosphorylase: crystal structures, immucillin inhibitors and dual catalytic function. J. Biol. Chem. 279, 18103–18106 (2004).

    Article  CAS  Google Scholar 

  4. Ting, L.M. et al. Targeting a novel Plasmodium falciparum purine recycling pathway with specific immucillins. J. Biol. Chem. 280, 9547–9554 (2005).

    Article  CAS  Google Scholar 

  5. Snow, R., Craig, M., Deichmann, U. & Marsh, K. Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population. Bull. World Health Organ. 77, 624–640 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Reyes, P. et al. Enzymes of purine and pyrimidine metabolism from the human malaria parasite, Plasmodium falciparum. Mol. Biochem. Parasitol. 5, 275–290 (1982).

    Article  CAS  Google Scholar 

  7. Muller, S. et al. In the human malaria parasite Plasmodium falciparum, polyamines are synthesized by a bifunctional ornithine decarboxylase, S-adenosylmethionine decarboxylase. J. Biol. Chem. 275, 8097–8102 (2000).

    Article  CAS  Google Scholar 

  8. Muller, S., Coombs, G.H. & Walter, R.D. Targeting polyamines of parasitic protozoa in chemotherapy. Trends Parasitol. 17, 242–249 (2001).

    Article  CAS  Google Scholar 

  9. Wrenger, C., Luersen, K., Krause, T., Muller, S. & Walter, R.D. The Plasmodium falciparum bifunctional ornithine decarboxylase, S-adenosyl-l-methionine decarboxylase, enables a well balanced polyamine synthesis without domain-domain interaction. J. Biol. Chem. 276, 29651–29656 (2001).

    Article  CAS  Google Scholar 

  10. Burkot, T.R., Graves, P.M., Paru, R., Wirtz, R.A. & Heywood, P.F. Human malaria transmission studies in the Anopheles punctulatus complex in Papua New Guinea: sporozoite rates, inoculation rates and sporozoite densities. Am. J. Trop. Med. Hyg. 39, 135–144 (1988).

    Article  CAS  Google Scholar 

  11. Weiss, W.R., Good, M.F., Hollingdale, M.R., Miller, L.H. & Berzofsky, J.A. Genetic control of immunity to Plasmodium yoelii sporozoites. J. Immunol. 143, 4263–4266 (1989).

    CAS  PubMed  Google Scholar 

  12. Weiss, W.R. Host-parasite interactions and immunity to irradiated sporozoites. Immunol. Lett. 25, 39–42 (1990).

    Article  CAS  Google Scholar 

  13. Khan, Z.M. & Vanderberg, J.P. Role of host cellular response in differential susceptibility of nonimmunized BALB/c mice to Plasmodium berghei and Plasmodium yoelii sporozoites. Infect. Immun. 59, 2529–2534 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoffman, S.L. et al. Immune response gene regulation of immunity to Plasmodium berghei sporozoites and circumsporozoite protein vaccines. Overcoming genetic restriction with whole organism and subunit vaccines. J. Immunol. 142, 3581–3584 (1989).

    CAS  PubMed  Google Scholar 

  15. Mota, M.M., Thathy, V., Nussenzweig, R.S. & Nussenzweig, V. Gene targeting in the rodent malaria parasite Plasmodium yoelii. Mol. Biochem. Parasitol. 113, 271–278 (2001).

    Article  CAS  Google Scholar 

  16. Jongco, A.M., Ting, L.M., Thathy, V., Mota, M.M. & Kim, K. Improved transfection and new selectable markers for the rodent malaria parasite Plasmodium yoelii. Mol. Biochem. Parasitol. 146, 242–250 (2006).

    Article  CAS  Google Scholar 

  17. Ecker, A., Moon, R., Sinden, R.E. & Billker, O. Generation of gene targeting constructs for Plasmodium berghei by a PCR-based method amenable to high throughput applications. Mol. Biochem. Parasitol. 145, 265–268 (2006).

    Article  CAS  Google Scholar 

  18. Kadekoppala, M., Kline, K., Akompongm, T. & Haldar, K. Stable expression of a new chimeric fluorescent reporter in the human malaria parasite Plasmodium falciparum. Infect. Immun. 68, 2328–2332 (2000).

    Article  CAS  Google Scholar 

  19. Menard, R. et al. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature 385, 336–340 (1997).

    Article  CAS  Google Scholar 

  20. Wykes, M. & Good, M.F. A case for whole-parasite malaria vaccines. Int. J. Parasitol. 37, 705–712 (2007).

    Article  CAS  Google Scholar 

  21. Hoffman, S.L. et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis. 185, 1155–1164 (2002).

    Article  Google Scholar 

  22. Luke, T.C. & Hoffman, S.L. Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. J. Exp. Biol. 206, 3803–3808 (2003).

    Article  Google Scholar 

  23. Mueller, A.K., Labaied, M., Kappe, S.H. & Matuschewski, K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433, 164–167 (2005).

    Article  CAS  Google Scholar 

  24. Makobongo, M.O. et al. The purine salvage enzyme hypoxanthine guanine xanthine phosphoribosyl transferase is a major target antigen for cell-mediated immunity to malaria. Proc. Natl. Acad. Sci. USA 100, 2628–2633 (2003).

    Article  CAS  Google Scholar 

  25. Pombo, D.J. et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360, 610–617 (2002).

    Article  Google Scholar 

  26. Sambandamurthy, V.K. & Jacobs, W.R., Jr. Live attenuated mutants of Mycobacterium tuberculosis as candidate vaccines against tuberculosis. Microbes Infect. 7, 955–961 (2005).

    Article  CAS  Google Scholar 

  27. Scheller, L.F. & Azad, A.F. Maintenance of protective immunity against malaria by persistent hepatic parasites derived from irradiated sporozoites. Proc. Natl. Acad. Sci. USA 92, 4066–4068 (1995).

    Article  CAS  Google Scholar 

  28. Bejon, P. et al. Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J. Infect. Dis. 191, 619–626 (2005).

    Article  Google Scholar 

  29. El Bissati, K. et al. The plasma membrane permease PfNT1 is essential for purine salvage in the human malaria parasite Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 103, 9286–9291 (2006).

    Article  CAS  Google Scholar 

  30. Sultan, A.A. et al. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 90, 511–522 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant R21AI052469 and US Army Research Grant W81XWH-05-2-0025 (both to K.K.). P.S. and A.C. were supported by US National Institutes of Health grant R01 AI056840. We gratefully thank V. Schramm for review of the manuscript before submission, J. Nonon and S. Gonzalez for technical support during mosquito rearing and infection, V. Lagal for advice on PCR and A. Mwakingwe for assistance with sporozoite challenge experiments. We also thank V. Schramm for advice on biochemical assays and many stimulating discussions during the course of this work.

Author information

Authors and Affiliations

Authors

Contributions

L.-M.T., M.G. and A.C. performed experiments. L.-M.T., P.S. and K.K. planned experiments and analyzed data. L.-M.T. and K.K. wrote the manuscript.

Corresponding author

Correspondence to Kami Kim.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4, Supplementary Table 1 and Supplementary Methods (PDF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting, LM., Gissot, M., Coppi, A. et al. Attenuated Plasmodium yoelii lacking purine nucleoside phosphorylase confer protective immunity. Nat Med 14, 954–958 (2008). https://doi.org/10.1038/nm.1867

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.1867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing