Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection

Abstract

Chikungunya virus (CHIKV) has infected millions of people in Africa, Europe and Asia1,2 since this alphavirus reemerged from Kenya in 2004. The severity of the disease and the spread of this epidemic virus present a serious public health threat in the absence of vaccines or antiviral therapies. Here, we describe a new vaccine that protects against CHIKV infection of nonhuman primates. We show that selective expression of viral structural proteins gives rise to virus-like particles (VLPs) in vitro that resemble replication-competent alphaviruses. Immunization with these VLPs elicited neutralizing antibodies against envelope proteins from alternative CHIKV strains. Monkeys immunized with VLPs produced high-titer neutralizing antibodies that protected against viremia after high-dose challenge. We transferred these antibodies into immunodeficient mice, where they protected against subsequent lethal CHIKV challenge, indicating a humoral mechanism of protection. Immunization with alphavirus VLP vaccines represents a strategy to contain the spread of CHIKV and related pathogenic viruses in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of CHIKV E–pseudotyped lentiviral vectors.
Figure 2: Characterization of CHIKV VLPs.
Figure 3: Neutralization of CHIKV strains 37997 and LR2006 OPY-1 after DNA or VLP vaccination in mice and monkeys.
Figure 4: Protection against CHIKV LR2006 OPY-1 challenge in monkeys immunized with VLPs and in a CHIKV mouse model after passive transfer of purified IgG.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

References

  1. Simon, F., Savini, H. & Parola, P. Chikungunya: a paradigm of emergence and globalization of vector-borne diseases. Med. Clin. North Am. 92, 1323–1343 (2008).

    Article  Google Scholar 

  2. Powers, A.M. & Logue, C.H. Changing patterns of Chikungunya virus: re-emergence of a zoonotic arbovirus. J. Gen. Virol. 88, 2363–2377 (2007).

    Article  CAS  Google Scholar 

  3. Ross, R.W. The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J. Hyg. (Lond.) 54, 177–191 (1956).

    Article  CAS  Google Scholar 

  4. Staples, J.E., Breiman, R.F. & Powers, A.M. Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis. 49, 942–948 (2009).

    Article  Google Scholar 

  5. Tsetsarkin, K.A., Vanlandingham, D.L., McGee, C.E. & Higgs, S. A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3, e201 (2007).

    Article  Google Scholar 

  6. Enserink, M. Entomology. A mosquito goes global. Science 320, 864–866 (2008).

    Article  CAS  Google Scholar 

  7. Strauss, J.H. & Strauss, E.G. The alphaviruses: gene expression, replication and evolution. Microbiol. Rev. 58, 491–562 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng, R.H. et al. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80, 621–630 (1995).

    Article  CAS  Google Scholar 

  9. Zhang, W. et al. Placement of the structural proteins in Sindbis virus. J. Virol. 76, 11645–11658 (2002).

    Article  CAS  Google Scholar 

  10. Arankalle, V.A. et al. Genetic divergence of Chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J. Gen. Virol. 88, 1967–1976 (2007).

    Article  CAS  Google Scholar 

  11. Harrison, V.R., Binn, L.N. & Randall, R. Comparative immunogenicities of chikungunya vaccines prepared in avian and mammalian tissues. Am. J. Trop. Med. Hyg. 16, 786–791 (1967).

    Article  CAS  Google Scholar 

  12. Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  Google Scholar 

  13. Yang, Z.-Y. et al. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the Spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 78, 5642–5650 (2004).

    Article  CAS  Google Scholar 

  14. Yang, Z.-Y. et al. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science 317, 825–828 (2007).

    Article  CAS  Google Scholar 

  15. Sourisseau, M. et al. Characterization of reemerging Chikungunya virus. PLoS Pathog. 3, e89 (2007).

    Article  Google Scholar 

  16. McClure, M.O., Sommerfelt, M.A., Marsh, M. & Weiss, R.A. The pH independence of mammalian retrovirus infection. J. Gen. Virol. 71, 767–773 (1990).

    Article  CAS  Google Scholar 

  17. Eckels, K.H., Harrison, V.R. & Hetrick, F.M. Chikungunya virus vaccine prepared by Tween-ether extraction. Appl. Microbiol. 19, 321–325 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pletnev, S.V. et al. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 105, 127–136 (2001).

    Article  CAS  Google Scholar 

  19. Caspar, D.L. & Klug, A., Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    Article  CAS  Google Scholar 

  20. Couderc, T. et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 4, e29 (2008).

    Article  Google Scholar 

  21. Couderc, T. et al. Prophylaxis and therapy for Chikungunya virus infection. J. Infect. Dis. 200, 516–523 (2009).

    Article  CAS  Google Scholar 

  22. Levitt, N.H. et al. Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4, 157–162 (1986).

    Article  CAS  Google Scholar 

  23. McClain, D.J. et al. Immunologic interference from sequential administration of live attenuated alphavirus vaccines. J. Infect. Dis. 177, 634–641 (1998).

    Article  CAS  Google Scholar 

  24. Edelman, R. et al. Phase II safety and immunogenicity study of live Chikungunya virus vaccine TSI-GSD-218. Am. J. Trop. Med. Hyg. 62, 681–685 (2000).

    Article  CAS  Google Scholar 

  25. Harrison, V.R., Eckels, K.H., Bartelloni, P.J. & Hampton, C. Production and evaluation of a formalin-killed Chikungunya vaccine. J. Immunol. 107, 643–647 (1971).

    CAS  PubMed  Google Scholar 

  26. Tiwari, M. et al. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine 27, 2513–2522 (2009).

    Article  CAS  Google Scholar 

  27. Wang, E. et al. Chimeric alphavirus vaccine candidates for Chikungunya. Vaccine 26, 5030–5039 (2008).

    Article  CAS  Google Scholar 

  28. Muthumani, K. et al. Immunogenicity of novel consensus-based DNA vaccines against Chikungunya virus. Vaccine 26, 5128–5134 (2008).

    Article  CAS  Google Scholar 

  29. Chackerian, B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines 6, 381–390 (2007).

    Article  CAS  Google Scholar 

  30. Bachmann, M.F. et al. The influence of antigen organization on B cell responsiveness. Science 262, 1448–1451 (1993).

    Article  CAS  Google Scholar 

  31. Noad, R. & Roy, P. Virus-like particles as immunogens. Trends Microbiol. 11, 438–444 (2003).

    Article  CAS  Google Scholar 

  32. Ludwig, C. & Wagner, R. Virus-like particles-universal molecular toolboxes. Curr. Opin. Biotechnol. 18, 537–545 (2007).

    Article  CAS  Google Scholar 

  33. Akahata, W., Yang, Z.Y. & Nabel, G.J. Comparative immunogenicity of human immunodeficiency virus particles and corresponding polypeptides in a DNA vaccine. J. Virol. 79, 626–631 (2005).

    Article  CAS  Google Scholar 

  34. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  Google Scholar 

  35. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Nagashima for help with electron microscopy and J.D. Yoder for initiating cryoelectron microscopy reconstruction. We also thank A. Tislerics and J. Stein for help with manuscript preparation, B. Hartman for graphic arts and members of the Nabel lab for helpful discussions. We thank R. Seder and D.D. Pinschewer (Department of Pathology and Immunology, University of Geneva) for their kind gift of Ifnar1−/− mice, A. Ault, J.-P. Todd, A. Zajac, C. Chiedi (Vaccine Research Center) and D. Gordon (Bioqual) for plaque assay and processed animal blood samples, J. Greenhouse for RT-PCR assay, B.W. Finneyfrock, T. Jenkins and A. Dodson for animal sampling and care, K. Foulds, M. Donaldson and M. Roederer for monkey sample procedures and J. Lee for preparing 293F cells for VLP production. This research was supported by the Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

W.A., Z.-Y.Y., S.H., S.R. and G.J.N. designed the research studies; W.A., Z.-Y.Y., H.A., S.S., H.A.H., W.-P.K., M.G.L. and S.R. performed the research; W.A. and Z.-Y.Y. contributed to development and generation of vectors; and W.A., Z.-Y.Y., H.A., S.S., H.A.H., W.-P.K., M.G.L., S.H., M.G.R., S.R. and G.J.N. analyzed data; and W.A., Z.-Y.Y., S.H., M.G.R., S.R. and G.J.N. wrote the paper.

Corresponding author

Correspondence to Gary J Nabel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–3 (PDF 852 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akahata, W., Yang, ZY., Andersen, H. et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med 16, 334–338 (2010). https://doi.org/10.1038/nm.2105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.2105

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology