Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes

Abstract

Pandemic influenza viruses often cause severe disease in middle-aged adults without preexisting comorbidities. The mechanism of illness associated with severe disease in this age group is not well understood1,2,3,4,5,6,7,8,9,10. Here we find preexisting serum antibodies that cross-react with, but do not protect against, 2009 H1N1 influenza virus in middle-aged adults. Nonprotective antibody is associated with immune complex–mediated disease after infection. We detected high titers of serum antibody of low avidity for H1-2009 antigen, and low-avidity pulmonary immune complexes against the same protein, in severely ill individuals. Moreover, C4d deposition—a marker of complement activation mediated by immune complexes—was present in lung sections of fatal cases. Archived lung sections from middle-aged adults with confirmed fatal influenza 1957 H2N2 infection revealed a similar mechanism of illness. These observations provide a previously unknown biological mechanism for the unusual age distribution of severe cases during influenza pandemics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histopathology and virus titers in 2009 H1N1 disease.
Figure 2: Inflammation in influenza A 2009 H1N1 disease.
Figure 3: Lymphopenia in influenza A 2009 H1N1 disease.
Figure 4: Immune complex–mediated disease in 2009 H1N1 influenza infection.

Similar content being viewed by others

References

  1. Morens, D.M., Taubenberger, J.K. & Fauci, A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 198, 962–970 (2008).

    Article  Google Scholar 

  2. Tumpey, T.M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).

    Article  CAS  Google Scholar 

  3. Itoh, Y. et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460, 1021–1025 (2009).

    Article  CAS  Google Scholar 

  4. Kobasa, D. et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319–323 (2007).

    Article  CAS  Google Scholar 

  5. Geiss, G.K. et al. Cellular transcriptional profiling in influenza A virus–infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl. Acad. Sci. USA 99, 10736–10741 (2002).

    Article  CAS  Google Scholar 

  6. Kash, J.C. et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578–581 (2006).

    Article  CAS  Google Scholar 

  7. Taubenberger, J.K. & Morens, D.M. 1918 influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22 (2006).

    Article  Google Scholar 

  8. Simonsen, L. et al. Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J. Infect. Dis. 178, 53–60 (1998).

    Article  CAS  Google Scholar 

  9. Morens, D.M. & Fauci, A.S. The 1918 influenza pandemic: insights for the 21st century. J. Infect. Dis. 195, 1018–1028 (2007).

    Article  Google Scholar 

  10. Perez-Padilla, R. et al. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N. Engl. J. Med. 361, 680–689 (2009).

    Article  CAS  Google Scholar 

  11. Chowell, G. et al. Severe respiratory disease concurrent with the circulation of H1N1 influenza. N. Engl. J. Med. 361, 674–679 (2009).

    Article  CAS  Google Scholar 

  12. Hancock, K. et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N. Engl. J. Med. 361, 1945–1952 (2009).

    Article  CAS  Google Scholar 

  13. Centers for Disease Control and Prevention (CDC). Serum cross-reactive antibody response to a novel influenza A (H1N1) virus after vaccination with seasonal influenza vaccine. MMWR Morb. Mortal. Wkly. Rep. 58, 521–524 (2009).

  14. The ANZIC Influenza Investigators. Critical care services and 2009 H1N1 influenza in Australia and New Zealand. N. Engl. J. Med. 361, 1925–1934 (2009).

  15. Bhat, N. et al. Influenza-associated deaths among children in the United States, 2003–2004. N. Engl. J. Med. 353, 2559–2567 (2005).

    Article  CAS  Google Scholar 

  16. Thompson, W.W. et al. Influenza-associated hospitalizations in the United States. J. Am. Med. Assoc. 292, 1333–1340 (2004).

    Article  CAS  Google Scholar 

  17. Delgado, M.F. et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat. Med. 15, 34–41 (2009).

    Article  CAS  Google Scholar 

  18. Reichert, T., Chowell, G., Nishiura, H., Christensen, R.A. & McCullers, J.A. Does glycosylation as a modifier of original antigenic sin explain the case age distribution and unusual toxicity of pandemic novel H1N1 influenza? BMC Infect. Dis. 10, 5 (2010).

    Article  Google Scholar 

  19. Mauad, T. et al. Lung pathology in fatal novel human influenza A (H1N1) infection. Am. J. Resp. Crit. Care. Med. 181, 72–79 (2010).

    Article  Google Scholar 

  20. Kobasa, D. et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431, 703–707 (2004).

    Article  CAS  Google Scholar 

  21. Perrone, L.A., Plowden, J.K., García-Sastre, A., Katz, J.M. & Tumpey, T.M. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog. 4, e1000115 (2008).

    Article  Google Scholar 

  22. de Jong, M.D. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12, 1203–1207 (2006).

    Article  CAS  Google Scholar 

  23. Lewis, D.E., Gilbert, B.E. & Knight, V. Influenza virus infection induces functional alterations in peripheral blood lymphocytes. J. Immunol. 137, 3777–3781 (1986).

    CAS  PubMed  Google Scholar 

  24. Greenbaum, J.A. et al. Preexisting immunity against swine-origin H1N1 influenza viruses in the general human population. Proc. Natl. Acad. Sci. USA 106, 20365–20370 (2009).

    Article  CAS  Google Scholar 

  25. Johnson, T.R. et al. Priming with secreted glycoprotein G of respiratory syncytial virus (RSV) augments interleukin-5 production and tissue eosinophilia after RSV challenge. J. Virol. 72, 2871–2880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Polack, F.P. et al. A Role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med. 196, 859–865 (2002).

    Article  CAS  Google Scholar 

  27. Regele, H. et al. Endothelial C4d deposition is associated with inferior kidney allograft outcome independently of cellular rejection. Nephrol. Dial. Transplant. 16, 2058–2066 (2001).

    Article  CAS  Google Scholar 

  28. Hall, C.B., Douglas, R.G., Simons, R.L. & Geiman, J.M. Interferon production in children with respiratory syncytial, influenza and parainfluenza virus infections. J. Pediatr. 93, 28–32 (1978).

    Article  CAS  Google Scholar 

  29. Salomon, R., Hoffmann, E. & Webster, R.G. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc. Natl. Acad. Sci. USA 104, 12479–12481 (2007).

    Article  Google Scholar 

  30. Palacios, G. et al. Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. PLoS ONE 4, e8540 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Funded by the Fundacion INFANT 2008 Fundraising Campaign and AI-054952 (F.P.P.), the Thrasher Research Fund Early Career Award and Fogarty International Center International Clinical Research Fellows Program at Vanderbilt (R24 TW007988) (G.A.M. and J.P.B.), US Department of Defense grant HDTRA1-08-10-BRCWMD-BAA and US National Institutes of Health grant P01 AI058113 (J.E.C. Jr.). Doctoral awards from the Consejo Nacional de Investigaciones Cientıficas y Técnicas, Argentina (A.C.M. and J.P.B.).

Author information

Authors and Affiliations

Authors

Contributions

F.P.P., G.A.M., K.M.E., J.D.C., J.E.C. Jr., J.V.W., A.C.M., J.P.B. and M.F.L. designed the project. A.C.M., J.P.B., M.F.L., J.Z.H., B.M., L.D., K.P.W., J.V.W., G.A.M. and F.P.P. performed experiments. J.C.K., J.K., J.B., C.R., Le. A., L.D., R.L., V.S., E.B., Li. A., G.C., J.F., L.S., J.J., M.E., J.E.C. Jr. and J.V.W. developed or provided key reagents or contributed samples. F.P.P. supervised the project. A.C.M., J.P.B., M.F.L., K.M.E., J.D.C., G.A.M. and F.P.P. wrote the paper.

Corresponding authors

Correspondence to Guillermina A Melendi or Fernando P Polack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 633 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monsalvo, A., Batalle, J., Lopez, M. et al. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med 17, 195–199 (2011). https://doi.org/10.1038/nm.2262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.2262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing