Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4

Abstract

Malaria, caused by the protozoan Plasmodium, is a devastating mosquito-borne disease with the potential to affect nearly half the world's population1. Despite mounting substantial T and B cell responses, humans fail to efficiently control blood-stage malaria or develop sterilizing immunity to reinfections2. Although forkhead box P3 (FOXP3)+CD4+ regulatory T (Treg) cells form a part of these responses3,4,5, their influence remains disputed and their mode of action is unknown. Here we show that Treg cells expand in both humans and mice in blood-stage malaria and interfere with conventional T helper cell responses and follicular T helper (TFH)–B cell interactions in germinal centers. Mechanistically, Treg cells function in a critical temporal window to impede protective immunity through cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Targeting Treg cells or CTLA-4 in this precise window accelerated parasite clearance and generated species-transcending immunity to blood-stage malaria in mice. Our study uncovers a critical mechanism of immunosuppression associated with blood-stage malaria that delays parasite clearance and prevents development of potent adaptive immunity to reinfection. These data also reveal a temporally discrete and potentially therapeutically amenable functional role for Treg cells and CTLA-4 in limiting antimalarial immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treg cells expand and modulate T helper cell responses and immunity to malaria.
Figure 2: CTLA-4 expression is enhanced in malaria and is integral to TFH–B–TFR cell interactions in GCs.
Figure 3: CTLA-4 blockade enhances CD4+ T cell and B cell responses, GC reaction, and antibody titers after P. yoelii infection.
Figure 4: Therapeutic blockade of CTLA-4 enhances immunity to malaria.

Similar content being viewed by others

References

  1. World Health Organization. World Malaria Report 2014 (World Health Organization, 2014).

  2. Tran, T.M. et al. An intensive longitudinal cohort study of Malian children and adults reveals no evidence of acquired immunity to Plasmodium falciparum infection. Clin. Infect. Dis. 57, 40–47 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ho, M. et al. Antigen-specific immunosuppression in human malaria due to Plasmodium falciparum. J. Infect. Dis. 153, 763–771 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Crompton, P.D. et al. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu. Rev. Immunol. 32, 157–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Braeckel-Budimir, N., Kurup, S.P. & Harty, J.T. Regulatory issues in immunity to liver and blood-stage malaria. Curr. Opin. Immunol. 42, 91–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Perez-Mazliah, D. & Langhorne, J. CD4 T-cell subsets in malaria: TH1/TH2 revisited. Front. Immunol. 5, 671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butler, N.S. et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat. Immunol. 13, 188–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Finney, O.C., Riley, E.M. & Walther, M. Regulatory T cells in malaria—friend or foe? Trends Immunol. 31, 63–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Hansen, D.S. & Schofield, L. Natural regulatory T cells in malaria: host or parasite allies? PLoS Pathog. 6, e1000771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hisaeda, H. et al. Escape of malaria parasites from host immunity requires CD4+CD25+ regulatory T cells. Nat. Med. 10, 29–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Amante, F.H. et al. A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. Am. J. Pathol. 171, 548–559 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Randall, L.M. et al. Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities. Infect. Immun. 76, 3312–3320 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nie, C.Q. et al. CD4+CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development of Plasmodium berghei–specific TH1 responses involved in cerebral malaria pathogenesis. Infect. Immun. 75, 2275–2282 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cambos, M., Bélanger, B., Jacques, A., Roulet, A. & Scorza, T. Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion. Int. J. Parasitol. 38, 229–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Couper, K.N. et al. IL-10 from CD4+CD25Foxp3CD127 adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PLoS Pathog. 4, e1000004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abel, S. et al. Strong impact of CD4+Foxp3+ regulatory T cells and limited effect of T cell–derived IL-10 on pathogen clearance during Plasmodium yoelii infection. J. Immunol. 188, 5467–5477 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Haque, A. et al. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo. PLoS Pathog. 6, e1001221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Linterman, M.A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aloulou, M. et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat. Commun. 7, 10579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Setiady, Y.Y., Coccia, J.A. & Park, P.U. In vivo depletion of CD4+FOXP3+ Treg cells by the PC61 anti-CD25 monoclonal antibody is mediated by FcγRIII+ phagocytes. Eur. J. Immunol. 40, 780–786 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Penaloza-MacMaster, P. et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J. Exp. Med. 211, 1905–1918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt, A., Oberle, N. & Krammer, P.H. Molecular mechanisms of Treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sebastian, M. et al. Helios controls a limited subset of regulatory T cell functions. J. Immunol. 196, 144–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, H.J. et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 350, 334–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei, Y., Feng, J., Hou, Z., Wang, X.M. & Yu, D. Flow cytometric analysis of circulating follicular helper T (TFH) and follicular regulatory T (TFR) populations in human blood. Methods Mol. Biol. 1291, 199–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Maceiras, A.R. & Graca, L. Identification of Foxp3+ T follicular regulatory (TFR) cells by flow cytometry. Methods Mol. Biol. 1291, 143–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Boyle, M.J. et al. Human antibodies fix complement to inhibit Plasmodiumfalciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 42, 580–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cohen, S., McGREGOR, I.A. & Carrington, S. γ-globulin and acquired immunity to human malaria. Nature 192, 733–737 (1961).

    Article  CAS  PubMed  Google Scholar 

  30. Sage, P.T. et al. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41, 1026–1039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yadav, M., Stephan, S. & Bluestone, J.A. Peripherally induced Tregs—role in immune homeostasis and autoimmunity. Front. Immunol. 4, 232 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Walker, L.S. & Sansom, D.M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 11, 852–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Yusuf, I. et al. Germinal center B cell depletion diminishes CD4+ follicular T helper cells in autoimmune mice. PLoS One 9, e102791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hannani, D. et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 25, 208–224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahlborg, N., Ling, I.T., Howard, W., Holder, A.A. & Riley, E.M. Protective immune responses to the 42-kilodalton (kDa) region of Plasmodium yoelii merozoite surface protein 1 are induced by the C-terminal 19-kDa region but not by the adjacent 33-kDa region. Infect. Immun. 70, 820–825 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hafalla, J.C. et al. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology. PLoS Pathog. 8, e1002504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zander, R.A. et al. PD-1 co-inhibitory and OX40 co-stimulatory crosstalk regulates helper T cell differentiation and anti-Plasmodium humoral immunity. Cell Host Microbe 17, 628–641 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McKenzie, F.E. & Bossert, W.H. Multispecies Plasmodium infections of humans. J. Parasitol. 85, 12–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Topalian, S.L., Drake, C.G. & Pardoll, D.M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Korman, A.J., Peggs, K.S. & Allison, J.P. Checkpoint blockade in cancer immunotherapy. Adv. Immunol. 90, 297–339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, Y. et al. Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR–MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells. J. Immunol. 180, 1565–1575 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, X. et al. Bcl6 expression specifies the T follicular helper cell program in vivo. J. Exp. Med. 209, 1841–1852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brundage, R.A. et al. Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc. Natl. Acad. Sci. USA 90, 11890–11894 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Obeng-Adjei, N. et al. Circulating Th1-cell-type Tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children. Cell Rep. 13, 425–439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Villarino, N.F. et al. Composition of the gut microbiota modulates the severity of malaria. Proc. Natl. Acad. Sci. USA 113, 2235–2240 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, M.T., Kurup, S.P., Starbeck-Miller, G.R. & Harty, J.T. Manipulating memory CD8 T cell numbers by timed enhancement of IL-2 signals. J. Immunol. 197, 1754–1761 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Qureshi, O.S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fulton, R.B., Meyerholz, D.K. & Varga, S.M. Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J. Immunol. 185, 2382–2392 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Epping and S. Hartwig for assistance; S. Varga (University of Iowa, PC61.5 antibody), T. Waldschmidt (University of Iowa, MR-1 antibody), and D.A.A. Vignali (University of Pittsburgh, hybridoma clone C9B7W) for reagents; S. Perlman and V. Badovinac for constructive comments; the University of Iowa Central Microscopy Research Facility; and the New York University Insectary Core Facility. Support for these studies was provided by grants from the National Institute of Allergy and Infectious Disease of the National Institutes of Health (NIAID/NIH) (AI42767, AI85515, AI95178, and AI100527 to J.T.H.). Support for the laboratory of N.S.B. was provided by grants from NIAID/NIH (AI125446 and AI127481) and the National Institute of General Medical Science of the NIH (GM103447). The Malian study and the analysis of human samples were funded by the Division of Intramural Research, NIAID/NIH.

Author information

Authors and Affiliations

Authors

Contributions

S.P.K., N.O.-A., S.M.A., and N.S.B. designed, performed, analyzed, and interpreted experiments. S.P.K., N.S.B., P.D.C., and J.T.H. wrote the paper. B.T., O.K.D., and P.D.C. supervised the human studies and designed, analyzed, and interpreted experiments. J.T.H. supervised the project and designed and interpreted experiments.

Corresponding author

Correspondence to John T Harty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurup, S., Obeng-Adjei, N., Anthony, S. et al. Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4. Nat Med 23, 1220–1225 (2017). https://doi.org/10.1038/nm.4395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.4395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing