Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Historical Perspective
  • Published:

An innately interesting decade of research in immunology

Abstract

“Nature has provided, in the white corpuscles as you call them—in the phagocytes as we call them—a natural means of devouring and destroying all disease germs. There is at bottom only one genuinely scientific treatment for all diseases, and that is to stimulate the phagocytes.” So opined B.B. in G.B. Shaw's The Doctor's Dilemma1 in a dramatic restatement of a key portion of Ilya Metchnikoff's Nobel Prize address: “Whenever the organism enjoys immunity, the introduction of infectious microbes is followed by the accumulation of mobile cells, of white corpuscles of the blood in particular which absorb the microbes and destroy them. The white corpuscles and the other cells capable of doing this have been designated 'phagocytes,' (i.e., devouring cells) and the whole function that ensures immunity has been given the name of 'phagocytosis'”2. Based on these insights into the foundation of resistance to infectious disease, Metchnikoff was awarded the 1908 Nobel Prize in Physiology or Medicine together with Paul Ehrlich (Fig. 1). Although both were cited for discoveries in immunity, the contributions of the two men seem worlds apart. Ehrlich's studies did not deal with generic responses to infection, but rather with the highly specific nature of antibodies and their relationship to the cells producing them: “As the cell receptor is obviously preformed, and the artificially produced antitoxin only the consequence, i.e. secondary, one can hardly fail to assume that the antitoxin is nothing else but discharged components of the cell, namely receptors discharged in excess”3. But biological systems are just that—systems—and the parts need to work together. And so we arrive, a century later, at an appreciation for just how intimately related these two seemingly disparate aspects of host defense really are.

Photo Researchers, Inc.

Paul Erlich (left) and Ilya Metchnikoff (right), winners of the 1908 Nobel Prize in Physiology or Medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 2: DCs, Tlrs and T cell effector polarization.
Figure 3: NK receptors and NK recognition.
Figure 4: The role of AIRE in induction of tissue antigen tolerance in the thymus and possible relationship to generation of CD25+CD4+ Treg that suppress autoreactivity in the periphery involving tissue antigen-reactive T cells that escape such deletion.

Similar content being viewed by others

References

  1. Shaw, G.B. The Doctor's Dilemma http://www.webbooks.com/Classics/Nonfiction/Drama/Shaw/Doctor/Home.htm

  2. Metchnikoff, I.I. On the Present State of the Question of Immunity in Infectious Diseases. (1908). http://nobelprize.org/medicine/laureates/1908/mechnikov-lecture.html

  3. Ehrlich, P. Partial Cell Functions (lecture, 1908). in Nobel Lectures, Physiology or Medicine 1901–1921. (Elsevier Publishing Company, Amsterdam, 1967).

    Google Scholar 

  4. Edelman, G.M. et al. The covalent structure of an entire γG immunoglobulin molecule. Proc. Natl. Acad. Sci. USA 63, 78–85 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davies, D.R., Padlan, E.A. & Segal, D.M. Three-dimensional structure of immunoglobulins. Annu. Rev. Biochem. 44, 639–667 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Amzel, L.M. & Poljak, R.J. Three-dimensional structure of immunoglobulins. Annu. Rev. Biochem. 48, 961–997 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Bjorkman, P.J. et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Brack, C., Hirama, M., Lenhard-Schuller, R. & Tonegawa, S. A complete immunoglobulin gene is created by somatic recombination. Cell 15, 1–14 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Hedrick, S.M., Cohen, D.I., Nielsen, E.A. & Davis, M.M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308, 149–153 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Yanagi, Y. et al. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308, 145–149 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Benacerraf, B. & McDevitt, H.O. Histocompatibility-linked immune response genes. Science 175, 273–279 (1972).

    Article  CAS  PubMed  Google Scholar 

  12. Rosenthal, A.S. & Shevach, E.M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J. Exp. Med. 138, 1194–1212 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zinkernagel, R.M. & Doherty, P.C. Restriction of in vitro T cell–mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Townsend, A.R., Gotch, F.M. & Davey, J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42, 457–467 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Babbitt, B.P., Allen, P.M., Matsueda, G., Haber, E. & Unanue, E.R. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317, 359–361 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Heber-Katz, E., Hansburg, D. & Schwartz, R.H. The Ia molecule of the antigen-presenting cell plays a critical role in immune response gene regulation of T cell activation. J. Mol. Cell. Immunol. 1, 3–18 (1983).

    CAS  PubMed  Google Scholar 

  17. Buus, S., Sette, A., Colon, S.M., Miles, C. & Grey, H.M. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science 235, 1353–1358 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Stern, L.J. & Wiley, D.C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2, 245–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Germain, R.N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76, 287–299 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Hesslein, D.G. & Schatz, D.G. Factors and forces controlling V(D)J recombination. Adv. Immunol. 78, 169–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Jung, D. & Alt, F.W. Unraveling V(D)J recombination; insights into gene regulation. Cell 116, 299–311 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Honjo, T., Muramatsu, M. & Fagarasan, S. AID: how does it aid antibody diversity? Immunity 20, 659–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Dorfman, J.R. & Germain, R.N. MHC-dependent survival of naive T cells? A complicated answer to a simple question. Microbes Infect. 4, 547–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Wulfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Stefanova, I., Dorfman, J.R. & Germain, R.N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Germain, R.N. & Stefanova, I. The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu. Rev. Immunol. 17, 467–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Krummel, M., Wulfing, C., Sumen, C. & Davis, M.M. Thirty-six views of T-cell recognition. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 1071–1076 (2000).

    Article  CAS  Google Scholar 

  28. Janeway, C.A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 1, 1–13 (1989).

    Article  Google Scholar 

  29. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Hoffmann, J.A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Ferrandon, D., Imler, J.L. & Hoffmann, J.A. Sensing infection in Drosophila: Toll and beyond. Semin. Immunol. 16, 43–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Rutz, M. et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 34, 2541–2550 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Beutler, B., Hoebe, K., Du, X. & Ulevitch, R.J. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol. 74, 479–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Janssens, S. & Beyaert, R. Role of Toll-like receptors in pathogen recognition. Clin. Microbiol. Rev. 16, 637–646 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kapsenberg, M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3, 984–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Reis e Sousa, C. Toll-like receptors and dendritic cells: for whom the bug tolls. Semin. Immunol. 16, 27–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Beutler, B. Not “molecular patterns” but molecules. Immunity 19, 155–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Medzhitov, R. & Janeway, C.A., Jr. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Barton, G.M. & Medzhitov, R. Toll-like receptor signaling pathways. Science 300, 1524–1525 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Vogel, S.N., Fitzgerald, K.A. & Fenton, M.J. TLRs: differential adapter utilization by toll-like receptors mediates TLR-specific patterns of gene expression. Mol. Interv. 3, 466–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Beutler, B., Hoebe, K. & Shamel, L. Forward genetic dissection of afferent immunity: the role of TIR adapter proteins in innate and adaptive immune responses. C. R. Biol. 327, 571–580 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Weighardt, H. et al. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. Eur. J. Immunol. 34, 558–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Beutler, B. & Poltorak, A. Sepsis and evolution of the innate immune response. Crit. Care Med. 29, S2–6; discussion S6–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Cristofaro, P. & Opal, S.M. The Toll-like receptors and their role in septic shock. Expert Opin. Ther. Targets 7, 603–612 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Steinman, R.M. & Cohn, Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142–1162 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Y.J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Fazekas De St Groth, B. et al. Experimental models linking dendritic cell lineage, phenotype and function. Immunol. Cell Biol. 80, 469–476 (2002).

    Article  PubMed  Google Scholar 

  55. Ardavin, C. Origin, precursors and differentiation of mouse dendritic cells. Nat. Rev. Immunol. 3, 582–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Wilson, H.L. & O'Neill, H.C. Murine dendritic cell development: difficulties associated with subset analysis. Immunol. Cell Biol. 81, 239–246 (2003).

    Article  PubMed  Google Scholar 

  57. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. & Lanzavecchia, A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 31, 3388–3393 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Edwards, A.D. et al. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33, 827–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  61. Mosmann, T.R. & Coffman, R.L. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv. Immunol. 46, 111–147 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Seder, R.A. & Paul, W.E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Sacks, D. & Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat. Rev. Immunol. 2, 845–858 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Wynn, T.A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Szabo, S.J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Ouyang, W. et al. Inhibition of TH1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Pulendran, B. et al. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J. Immunol. 167, 5067–5076 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Pulendran, B. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev. 199, 227–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Marshak-Rothstein, A., Busconi, L., Rifkin, I.R. & Viglianti, G.A. The stimulation of Toll-like receptors by nuclear antigens: a link between apoptosis and autoimmunity. Rheum. Dis. Clin. North Am. 30, 559–74, ix (2004).

    Article  PubMed  Google Scholar 

  72. Ahmad-Nejad, P. et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32, 1958–1968 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Tsan, M.F. & Gao, B. Endogenous ligands of Toll-like receptors. J. Leukoc. Biol. 76, 514–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Geijtenbeek, T.B., Engering, A. & Van Kooyk, Y. DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J. Leukoc. Biol. 71, 921–931 (2002).

    CAS  PubMed  Google Scholar 

  75. Gordon, S. Pattern recognition receptors: doubling up for the innate immune response. Cell 111, 927–930 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Diebold, S.S. et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424, 324–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Santini, S.M. et al. Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J. Exp. Med. 191, 1777–1788 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reid, S.D., Penna, G. & Adorini, L. The control of T cell responses by dendritic cell subsets. Curr. Opin. Immunol. 12, 114–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Liu, Y.J., Kanzler, H., Soumelis, V. & Gilliet, M. Dendritic cell lineage, plasticity and cross-regulation. Nat. Immunol. 2, 585–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Pulendran, B. Modulating TH1/TH2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol. Res. 29, 187–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Lotze, M.T. & Thomson, A.W. (eds.). Dendritic Cells: Biology and Clinical Applications (Academic, San Diego, 1999).

    Google Scholar 

  82. Traver, D. et al. Development of CD8α-positive dendritic cells from a common myeloid progenitor. Science 290, 2152–2154 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Manz, M.G., Traver, D., Miyamoto, T., Weissman, I.L. & Akashi, K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97, 3333–3341 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Wu, L. et al. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98, 3376–3382 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Kamath, A.T. et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol. 165, 6762–6770 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Naik, S., Vremec, D., Wu, L., O'Keeffe, M. & Shortman, K. CD8α+ mouse spleen dendritic cells do not originate from the CD8α - dendritic cell subset. Blood 102, 601–604 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Tsujimura, H. et al. ICSBP/IRF-8 retrovirus transduction rescues dendritic cell development in vitro. Blood 101, 961–969 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Aliberti, J. et al. Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells. Blood 101, 305–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Kadowaki, N., Antonenko, S., Lau, J.Y. & Liu, Y.J. Natural interferon α/β -producing cells link innate and adaptive immunity. J. Exp. Med. 192, 219–226 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Dalod, M. et al. Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta. J. Exp. Med. 197, 885–898 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. LeibundGut-Landmann. S., Waldburger, J.M., Reis e Sousa, C., Acha-Orbea, H. & Reith, W. MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells. Nat. Immunol. 5, 899–908 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Rissoan, M.C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat. Immunol. 1, 311–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Penna, G., Vulcano, M., Sozzani, S. & Adorini, L. Differential migration behavior and chemokine production by myeloid and plasmacytoid dendritic cells. Hum. Immunol. 63, 1164–1171 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Hemmi, H., Kaisho, T., Takeda, K. & Akira, S. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol. 170, 3059–3064 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Krieg, A.M. & Davis, H.L. Enhancing vaccines with immune stimulatory CpG DNA. Curr. Opin. Mol. Ther. 3, 15–24 (2001).

    CAS  PubMed  Google Scholar 

  100. Krieg, A.M., Yi, A.K., Schorr, J. & Davis, H.L. The role of CpG dinucleotides in DNA vaccines. Trends Microbiol. 6, 23–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Pisetsky, D.S. Mechanisms of immune stimulation by bacterial DNA. Springer Semin. Immunopathol. 22, 21–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Jahnsen, F.L., Farkas, L., Lund-Johansen, F. & Brandtzaeg, P. Involvement of plasmacytoid dendritic cells in human diseases. Hum. Immunol. 63, 1201–1205 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. de Heer, H.J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Steinman, R.M. & Nussenzweig, M.C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA 99, 351–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lu, L. & Thomson, A.W. Manipulation of dendritic cells for tolerance induction in transplantation and autoimmune disease. Transplantation 73, S19–S22 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. von Boehmer, H., Teh, H.S. & Kisielow, P. The thymus selects the useful, neglects the useless and destroys the harmful. Immunol. Today 10, 57–61 (1989).

    Article  CAS  PubMed  Google Scholar 

  108. Heath, V.L., Moore, N.C., Parnell, S.M. & Mason, D.W. Intrathymic expression of genes involved in organ specific autoimmune disease. J. Autoimmun. 11, 309–318 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Heino, M. et al. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem. Biophys. Res. Commun. 257, 821–825 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C.C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Kyewski, B. & Derbinski, J. Self-representation in the thymus: an extended view. Nat. Rev. Immunol. 4, 688–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Scott, H.S. et al. Common mutations in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients of different origins. Mol. Endocrinol. 12, 1112–1119 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Rosatelli, M.C. et al. A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. Hum. Genet. 103, 428–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Liston, A. et al. Gene dosage–limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J. Exp. Med. 200, 1015–1026 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hornum, L. & Markholst, H. New autoimmune genes and the pathogenesis of type 1 diabetes. Curr. Diab. Rep. 4, 135–142 (2004).

    Article  PubMed  Google Scholar 

  118. Kurts, C., Kosaka, H., Carbone, F.R., Miller, J.F. & Heath, W.R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Steinman, R.M., Turley, S., Mellman, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Heath, W.R. & Carbone, F.R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Legge, K.L. et al. On the role of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity. J. Exp. Med. 196, 217–227 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stockinger, B. & Hausmann, B. Functional recognition of in vivo processed self antigen. Int. Immunol. 6, 247–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, F.P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Min, W.P. et al. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J. Immunol. 170, 1304–1312 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fisson, S. et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 198, 737–746 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Steinman, R.M. et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann NY Acad Sci 987, 15–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  PubMed  Google Scholar 

  132. Maraskovsky, E. et al. Dramatic numerical increase of functionally mature dendritic cells in FLT3 ligand-treated mice. Adv. Exp. Med. Biol. 417, 33–40 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Young, J.W. Dendritic cells: expansion and differentiation with hematopoietic growth factors. Curr. Opin. Hematol. 6, 135–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Zou, G.M. & Tam, Y.K. Cytokines in the generation and maturation of dendritic cells: recent advances. Eur. Cytokine Netw. 13, 186–199 (2002).

    CAS  PubMed  Google Scholar 

  135. Steinman, R.M. & Dhodapkar, M. Active immunization against cancer with dendritic cells: the near future. Int. J. Cancer 94, 459–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Schuler, G., Schuler-Thurner, B. & Steinman, R.M. The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 15, 138–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Figdor, C.G., de Vries, I.J., Lesterhuis, W.J. & Melief, C.J. Dendritic cell immunotherapy: mapping the way. Nat. Med. 10, 475–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Carayanniotis, G., Skea, D.L., Luscher, M.A. & Barber, B.H. Adjuvant-independent immunization by immunotargeting antigens to MHC and non-MHC determinants in vivo. Mol. Immunol. 28, 261–267 (1991).

    Article  CAS  PubMed  Google Scholar 

  139. Finkelman, F.D., Lees, A., Birnbaum, R., Gause, W.C. & Morris, S.C. Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J. Immunol. 157, 1406–1414 (1996).

    CAS  PubMed  Google Scholar 

  140. van Bergen, J. et al. Get into the groove! Targeting antigens to MHC class II. Immunol. Rev. 172, 87–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. Kiessling, R., Klein, E. & Wigzell, H. Natural killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article  CAS  PubMed  Google Scholar 

  142. Kiessling, R. & Haller, O. Natural killer cells in the mouse: an alternative immune surveillance mechanism? Contemp. Top. Immunobiol. 8, 171–201 (1978).

    Article  CAS  PubMed  Google Scholar 

  143. Herberman, R.B. & Holden, H.T. Natural cell-mediated immunity. Adv. Cancer Res. 27, 305–377 (1978).

    Article  CAS  PubMed  Google Scholar 

  144. Karlhofer, F.M., Ribaudo, R.K. & Yokoyama, W.M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358, 66–70 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Moretta, A. et al. P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J. Exp. Med. 178, 597–604 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Litwin, V., Gumperz, J., Parham, P., Phillips, J.H. & Lanier, L.L. NKB1: a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J. Exp. Med. 180, 537–543 (1994).

    Article  CAS  PubMed  Google Scholar 

  147. Daniels, B.F., Karlhofer, F.M., Seaman, W.E. & Yokoyama, W.M. A natural killer cell receptor specific for a major histocompatibility complex class I molecule. J. Exp. Med. 180, 687–692 (1994).

    Article  CAS  PubMed  Google Scholar 

  148. Brennan, J., Mager, D., Jefferies, W. & Takei, F. Expression of different members of the Ly-49 gene family defines distinct natural killer cell subsets and cell adhesion properties. J. Exp. Med. 180, 2287–2295 (1994).

    Article  CAS  PubMed  Google Scholar 

  149. Wagtmann, N. et al. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2, 439–449 (1995).

    Article  CAS  PubMed  Google Scholar 

  150. Lanier, L.L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Yokoyama, W.M. & Plougastel, B.F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Raulet, D.H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Bottino, C., Moretta, L., Pende, D., Vitale, M. & Moretta, A. Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Mol. Immunol. 41, 569–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Raulet, D.H., Vance, R.E. & McMahon, C.W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Bakker, A.B., Wu, J., Phillips, J.H. & Lanier, L.L. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals. Hum. Immunol. 61, 18–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Campbell, K.S. & Colonna, M. Human natural killer cell receptors and signal transduction. Int. Rev. Immunol. 20, 333–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Lanier, L.L. Natural killer cell receptor signaling. Curr. Opin. Immunol. 15, 308–314 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Cerwenka, A. & Lanier, L.L. Ligands for natural killer cell receptors: redundancy or specificity. Immunol. Rev. 181, 158–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Radaev, S. & Sun, P.D. Structure and function of natural killer cell surface receptors. Annu. Rev. Biophys. Biomol. Struct. 32, 93–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Versteeg, R. NK cells and T cells: mirror images? Immunol. Today 13, 244–247 (1992).

    Article  CAS  PubMed  Google Scholar 

  161. Farrell, H.E. & Davis-Poynter, N.J. From sabotage to camouflage: viral evasion of cytotoxic T lymphocyte and natural killer cell-mediated immunity. Semin. Cell Dev. Biol. 9, 369–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. Lorenzo, M.E., Ploegh, H.L. & Tirabassi, R.S. Viral immune evasion strategies and the underlying cell biology. Semin. Immunol. 13, 1–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Basta, S. & Bennink, J.R. A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol. 16, 231–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. York, I.A. et al. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77, 525–535 (1994).

    Article  CAS  PubMed  Google Scholar 

  165. Fruh, K. et al. A viral inhibitor of peptide transporters for antigen presentation. Nature 375, 415–418 (1995).

    Article  CAS  PubMed  Google Scholar 

  166. Park, B. et al. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20, 71–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Wiertz, E.J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  168. Ljunggren, H.G. & Karre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  169. Brennan, J., Mahon, G., Mager, D.L., Jefferies, W.A. & Takei, F. Recognition of class I major histocompatibility complex molecules by Ly-49: specificities and domain interactions. J. Exp. Med. 183, 1553–1559 (1996).

    Article  CAS  PubMed  Google Scholar 

  170. Smith, H.R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Voigt, V. et al. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc. Natl. Acad. Sci. USA 100, 13483–13488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  173. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. & Raulet, D.H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 1, 119–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Sutherland, C.L., Chalupny, N.J. & Cosman, D. The UL16-binding proteins, a novel family of MHC class I-related ligands for NKG2D, activate natural killer cell functions. Immunol. Rev. 181, 185–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  175. Carayannopoulos, L.N., Naidenko, O.V., Fremont, D.H. & Yokoyama, W.M. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J. Immunol. 169, 4079–4083 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Long, E.O. Tumor cell recognition by natural killer cells. Semin. Cancer Biol. 12, 57–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Diefenbach, A. & Raulet, D.H. The innate immune response to tumors and its role in the induction of T-cell immunity. Immunol. Rev. 188, 9–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Cerwenka, A. & Lanier, L.L. NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. Tissue Antigens 61, 335–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Salih, H.R. et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102, 1389–1396 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Bendelac, A., Rivera, M.N., Park, S.H. & Roark, J.H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Taniguchi, M. & Nakayama, T. Recognition and function of Vα14 NKT cells. Semin. Immunol. 12, 543–550 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Zeng, Z. et al. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  184. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  185. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science, published online 11 November 2004 (doi: 10.1126/science.1103440)

  186. Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E. & Brenner, M.B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Teixeira, H.C. & Kaufmann, S.H. Role of NK1.1+ cells in experimental listeriosis. NK1+ cells are early IFN-gamma producers but impair resistance to Listeria monocytogenes infection. J. Immunol. 152, 1873–1882 (1994).

    CAS  PubMed  Google Scholar 

  188. Yoshimoto, T., Bendelac, A., Watson, C., Hu-Li, J. & Paul, W.E. Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 270, 1845–1847 (1995).

    Article  CAS  PubMed  Google Scholar 

  189. Biron, C.A. & Brossay, L. NK cells and NKT cells in innate defense against viral infections. Curr. Opin. Immunol. 13, 458–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Biron, C.A., Nguyen, K.B., Pien, G.C., Cousens, L.P. & Salazar-Mather, T.P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  191. Steinman, R.M. Some interfaces of dendritic cell biology. APMIS 111, 675–697 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Green, D.R. & Webb, D.R. Saying the 'S' word in public. Immunol. Today 14, 523–525 (1993).

    Article  CAS  PubMed  Google Scholar 

  193. Shevach, E.M. Regulatory T cells in autoimmmunity*. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Hori, S., Takahashi, T. & Sakaguchi, S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv. Immunol. 81, 331–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  196. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  197. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Fehervari, Z. & Sakaguchi, S. Development and function of CD25+CD4+ regulatory T cells. Curr. Opin. Immunol. 16, 203–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Ramsdell, F. Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity 19, 165–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Gambineri, E., Torgerson, T.R. & Ochs, H.D. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435 (2003).

    Article  CAS  PubMed  Google Scholar 

  202. Chatenoud, L., Salomon, B. & Bluestone, J.A. Suppressor T cells–they're back and critical for regulation of autoimmunity! Immunol. Rev. 182, 149–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. Berzins, S.P., Venanzi, E.S., Benoist, C. & Mathis, D. T-cell compartments of prediabetic NOD mice. Diabetes 52, 327–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. Karim, M., Bushell, A.R. & Wood, K.J. Regulatory T cells in transplantation. Curr. Opin. Immunol. 14, 584–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Rouse, B.T. & Suvas, S. Regulatory cells and infectious agents: detentes cordiale and contraire. J. Immunol. 173, 2211–2215 (2004).

    Article  CAS  PubMed  Google Scholar 

  207. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  208. Roncarolo, M.G., Bacchetta, R., Bordignon, C., Narula, S. & Levings, M.K. Type 1 T regulatory cells. Immunol. Rev. 182, 68–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  209. Barrat, F.J. et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (TH1)- and TH2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Malek, T.R. The main function of IL-2 is to promote the development of T regulatory cells. J. Leukoc. Biol. 74, 961–965 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Piccirillo, C.A. & Shevach, E.M. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol. 167, 1137–1140 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Thornton, A.M. & Shevach, E.M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  213. Maloy, K.J. et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med. 197, 111–119 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med. 194, 629–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nakamura, K. et al. TGF-β 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J. Immunol. 172, 834–842 (2004).

    Article  CAS  PubMed  Google Scholar 

  216. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  217. Sharpe, A.H. & Freeman, G.J. The B7–CD28 superfamily. Nat. Rev. Immunol. 2, 116–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  218. Carreno, B.M. & Collins, M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu. Rev. Immunol. 20, 29–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  219. Alegre, M.L., Frauwirth, K.A. & Thompson, C.B. T-cell regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 1, 220–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  220. Chambers, C.A., Kuhns, M.S., Egen, J.G. & Allison, J.P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001).

    Article  CAS  PubMed  Google Scholar 

  221. Egen, J.G. & Allison, J.P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16, 23–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  222. Pentcheva-Hoang, T., Egen, J.G., Wojnoonski, K. & Allison, J.P. B7–1 and B7–2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 21, 401–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  223. Tseng, S.Y. et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 193, 839–846 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  225. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  226. Chen, L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 4, 336–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  227. Dong, C., Nurieva, R.I. & Prasad, D.V. Immune regulation by novel costimulatory molecules. Immunol. Res. 28, 39–48 (2003).

    Article  PubMed  Google Scholar 

  228. Newton, K. & Strasser, A. Cell death control in lymphocytes. Adv. Immunol. 76, 179–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  229. Surh, C.D. & Sprent, J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103 (1994).

    Article  CAS  PubMed  Google Scholar 

  230. Palmer, E. Negative selection–clearing out the bad apples from the T-cell repertoire. Nat. Rev. Immunol. 3, 383–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  231. Defrance, T., Casamayor-Palleja, M. & Krammer, P.H. The life and death of a B cell. Adv. Cancer Res. 86, 195–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  232. Jankovic, M., Casellas, R., Yannoutsos, N., Wardemann, H. & Nussenzweig, M.C. RAGs and regulation of autoantibodies. Annu. Rev. Immunol. 22, 485–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  233. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  234. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  235. Seder, R.A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  236. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  237. Chan, F.K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).

    Article  CAS  PubMed  Google Scholar 

  238. Croft, M. Costimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol. 3, 609–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  239. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  240. Bourgeois, C., Rocha, B. & Tanchot, C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297, 2060–2063 (2002).

    Article  CAS  PubMed  Google Scholar 

  241. Janssen, E.M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    Article  CAS  PubMed  Google Scholar 

  242. Sun, J.C. & Bevan, M.J. Cutting edge: long-lived CD8 memory and protective immunity in the absence of CD40 expression on CD8 T cells. J. Immunol. 172, 3385–3389 (2004).

    Article  CAS  PubMed  Google Scholar 

  243. Sun, J.C. & Bevan, M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  245. Bevan, M.J. Helping the CD8+ T-cell response. Nat. Rev. Immunol. 4, 595–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  246. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  247. Cyster, J.G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999).

    Article  CAS  PubMed  Google Scholar 

  248. von Andrian, U.H. & Mackay, C.R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  249. Mackay, C.R. Chemokines: immunology's high impact factors. Nat. Immunol. 2, 95–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  250. Murphy, P.M. Chemokines. in Fundamental Immunology (ed. Paul, W.E.) 801–840 (Lippincott, Williams, and Wilkins, Philadelphia, 2003).

    Google Scholar 

  251. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  252. Sallusto, F., Mackay, C.R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  253. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  PubMed  Google Scholar 

  254. Ansel, K.M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  255. Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. published online 11 October 2004 (doi: 10.1146/annurev.immunol.23.021704.115628)

  256. Mora, J.R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  257. Kim, C.H., Nagata, K. & Butcher, E.C. Dendritic cells support sequential reprogramming of chemoattractant receptor profiles during naive to effector T cell differentiation. J. Immunol. 171, 152–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  258. Iwata, M. et al. Retinoic Acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  259. Berger, E.A., Murphy, P.M. & Farber, J.M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  PubMed  Google Scholar 

  260. Horuk, R. et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261, 1182–1184 (1993).

    Article  CAS  PubMed  Google Scholar 

  261. Murphy, P.M. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat. Immunol. 2, 116–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  262. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  263. Reijonen, H. & Kwok, W.W. Use of HLA class II tetramers in tracking antigen-specific T cells and mapping T-cell epitopes. Methods 29, 282–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  264. Meidenbauer, N., Hoffmann, T.K. & Donnenberg, A.D. Direct visualization of antigen-specific T cells using peptide-MHC-class I tetrameric complexes. Methods 31, 160–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  265. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  266. Wulfing, C., Sjaastad, M.D. & Davis, M.M. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl. Acad. Sci. USA 95, 6302–6307 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  268. Bromley, S.K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  269. Kupfer, A. & Kupfer, H. Imaging immune cell interactions and functions: SMACs and the Immunological Synapse. Semin. Immunol. 15, 295–300 (2003).

    Article  CAS  PubMed  Google Scholar 

  270. Davis, M.M. et al. Dynamics of cell surface molecules during T cell recognition. Annu. Rev. Biochem. 72, 717–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  271. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  272. Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  PubMed  Google Scholar 

  273. Cahalan, M.D., Parker, I., Wei, S.H. & Miller, M.J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol. 2, 872–880 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  PubMed  Google Scholar 

  275. Bousso, P., Bhakta, N.R., Lewis, R.S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    Article  CAS  PubMed  Google Scholar 

  276. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol. 4, 579–585 (2003).

    Article  CAS  PubMed  Google Scholar 

  277. Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  278. Waldmann, T.A. Immunotherapy: past, present and future. Nat. Med. 9, 269–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  279. Hacein-Bey-Abina, S. et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 346, 1185–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  280. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  281. Chinen, J. & Puck, J.M. Successes and risks of gene therapy in primary immunodeficiencies. J. Allergy. Clin. Immunol. 113, 595–603; quiz 604 (2004).

    Article  CAS  PubMed  Google Scholar 

  282. Van Der Bruggen, P. et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 188, 51–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  283. Pardoll, D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  284. Rosenberg, S.A. Shedding light on immunotherapy for cancer. N. Engl. J. Med. 350, 1461–1463 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Wang, H.Y. et al. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20, 107–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  286. Egen, J.G., Kuhns, M.S. & Allison, J.P. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 3, 611–618 (2002).

    Article  CAS  PubMed  Google Scholar 

  287. Hodi, F.S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. USA 100, 4712–4717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Phan, G.Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Herzenberg, L.A., Black, S.J. & Herzenberg, L.A. Regulatory circuits and antibody responses. Eur. J. Immunol. 10, 1–11 (1980).

    Article  CAS  PubMed  Google Scholar 

  290. Germain, R.N. The art of the probable: system control in the adaptive immune system. Science 293, 240–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  291. Gett, A.V. & Hodgkin, P.D. A cellular calculus for signal integration by T cells. Nat. Immunol. 1, 239–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  292. Brenner, S. End of the interlude? Nat. Biotechnol. 22, 1191 (2004).

    Article  CAS  Google Scholar 

  293. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  294. Maekawa, Y. et al. d1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19, 549–559 (2003).

    Article  CAS  PubMed  Google Scholar 

  295. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  296. Vivier, E. & Anfossi, N. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat. Rev. Immunol. 4, 190–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  297. Bottino, C., Moretta, L., Pende, D., Vitale, M. & Moretta, A. Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Mol. Immunol. 41, 569–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  298. Grossman, W.J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to my many colleagues who willingly suggested their “Top Ten” recent immunology research advances. However, not all the important discoveries of the last 10 years can be dealt with in this limited space and it is inevitable that there will be disagreement with what I have chosen to emphasize. The responsibility for these selections is mine. To those who see either major omissions or excess attention to one topic or another, or who find the citations imperfect, I apologize in advance, offering only the excuse that what I have written represents a good faith attempt to highlight the principal accomplishments of the field during this period and to give as much credit as possible within the limits of this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germain, R. An innately interesting decade of research in immunology. Nat Med 10, 1307–1320 (2004). https://doi.org/10.1038/nm1159

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing