Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T cell vaccines for microbial infections

Abstract

Vaccination, or the deliberate induction of protective immunity by administering nonpathogenic forms of a microbe or its antigens to induce a memory immune response, is the world's most cost-effective medical procedure for preventing morbidity and mortality caused by infectious disease1. Historically, most vaccines have worked by eliciting long-lived plasma cells. These cells produce antibodies that limit disease by neutralizing a toxin or blocking the spread of the infectious agent. For these 'B cell vaccines,' the immunological marker, or correlate, for protection is the titer of protective antibodies. With the discovery of HIV/AIDS, vaccine development has been confronted by an agent that is not easily blocked by antibody2. To overcome this, researchers who are developing HIV/AIDS vaccines have turned to the elicitation of cellular immunity, or 'T cell vaccines,' which recognize and kill infected cells3,4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variability in vaccine elicited responses and phases of CD8 T cell responses.
Figure 2: Patterns of CD8 T cells found in the blood of A*01 macaques following a SIV infection and the administration of three different SIV or SHIV vaccines.
Figure 3: Patterns of CD8 T cells found in the blood of A*01 macaques, both before and after challenge, for three different types of vaccines.
Figure 4: Assays for T cell responses.

Similar content being viewed by others

References

  1. Nossal, G.J. The Global Alliance for Vaccines and Immunization—a millennial challenge. Nat. Immunol. 1, 5–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Burton, D.R. et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol. 5, 233–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Robinson, H.L. New Hope for an AIDS Vaccine. Nat. Rev. Immunol. 2, 239–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Letvin, N.L. Progress toward an HIV vaccine. Annu. Rev. Med. 56, 213–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bourgeois, C., Rocha, B. & Tanchot, C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297, 2060–2063 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Janssen, E.M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Sun, J.C. & Bevan, M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, J.C., Williams, M.A. & Bevan, M.J. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat. Immunol. 5, 927–933 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borrow, P. et al. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J. Exp. Med. 183, 2129–2142 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Rubbert, A. et al. Multifactorial nature of noncytolytic CD8+ T cell-mediated suppression of HIV replication: beta-chemokine-dependent and -independent effects. AIDS Res. Hum. Retroviruses 13, 63–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Levy, J.A., Mackewicz, C.E. & Barker, E. Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol. Today 17, 217–224 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Pal, R. et al. Inhibition of HIV-1 infection by the beta-chemokine MDC. Science 278, 695–698 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Amara, R.R. et al. Critical role for Env as well as Gag-Pol in control of a simian-human immunodeficiency virus 89.6P challenge by a DNA prime/recombinant modified vaccinia virus Ankara vaccine. J. Virol. 76, 6138–6146 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amara, R.R. et al. Different patterns of immune responses but similar control of a mucosal immunodeficiency virus challenge by MVA and DNA/MVA vaccines. J. Virol. 76, 7625–7631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith, J.M. et al. Multiprotein HIV-1 Clade B DNA/MVA Vaccine: Construction, Safety and Immunogenicity. AIDS Res. Hum. Retroviruses 20, 654–665 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Smith, J.M. et al. DNA/MVA vaccine for HIV type 1: effects of codon-optimization and the expression of aggregates or virus-like particles on the immunogenicity of the DNA prime. AIDS Res. Hum. Retroviruses 20, 1335–1347 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Sette, A. & Fikes, J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr. Opin. Immunol. 15, 461–470 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Goulder, P.J. & Watkins, D.I. HIV and SIV CTL escape: implications for vaccine design. Nat. Rev. Immunol. 4, 630–640 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499–1512 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wherry, E.J., Blattman, J.N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kostense, S. et al. Persistent numbers of tetramer+ CD8(+) T cells, but loss of interferon-gamma+ HIV-specific T cells during progression to AIDS. Blood 99, 2505–2511 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Sadagopal, S. et al. Signature for Long-term vaccine-mediated controlof as SHIV-98.6P challenge: Stable low breadth and low frequency T cell response capable of co-producing IFN-gamma and IL-2. J. Virol. 79, 3243–3253 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McKay, P.F. et al. Vaccine protection against functional CTL abnormalities in simian human immunodeficiency virus-infected rhesus monkeys. J. Immunol. 168, 332–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Migueles, S.A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 3, 1061–1068 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kaech, S.M., Wherry, E.J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Welsh, R.M., Selin, L.K. & Szomolanyi-Tsuda, E. Immunological memory to viral infections. Annu. Rev. Immunol. 22, 711–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Grayson, J.M., Harrington, L.E., Lanier, J.G., Wherry, E.J. & Ahmed, R. Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J. Immunol. 169, 3760–3770 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Badovinac, V.P., Messingham, K.A., Hamilton, S.E. & Harty, J.T. Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host. J. Immunol. 170, 4933–4942 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Amara, R.R., Nigam, P., Sharma, S., Liu, J. & Bostik, V. Long-lived poxvirus immunity, robust CD4 help, and better persistence of CD4 than CD8 T cells. J. Virol. 78, 3811–3816 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hammarlund, E. et al. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9, 1131–1137 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Crotty, S. et al. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171, 4969–4973 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Demkowicz, W.E., Jr., Littaua, R.A., Wang, J. & Ennis, F.A. Human cytotoxic T-cell memory: long-lived responses to vaccinia virus. J. Virol. 70, 2627–2631 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wherry, E.J., Puorro, K.A., Porgador, A. & Eisenlohr, L.C. The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J. Immunol. 163, 3735–3745 (1999).

    CAS  PubMed  Google Scholar 

  37. Pardigon, N. et al. Role of co-stimulation in CD8+ T cell activation. Int. Immunol. 10, 619–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Whitmire, J.K. & Ahmed, R. Costimulation in antiviral immunity: differential requirements for CD4(+) and CD8(+) T cell responses. Curr. Opin. Immunol. 12, 448–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol. 22, 765–787 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Blattman, J.N. et al. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat. Med. 9, 540–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Yajima, T. et al. Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure. J. Immunol. 168, 1198–1203 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Khan, I.A. & Casciotti, L. IL-15 prolongs the duration of CD8+ T cell-mediated immunity in mice infected with a vaccine strain of Toxoplasma gondii. J. Immunol. 163, 4503–4509 (1999).

    CAS  PubMed  Google Scholar 

  43. Sprent, J., Zhang, X., Sun, S. & Tough, D. T-cell proliferation in vivo and the role of cytokines. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 317–322 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Badovinac, V.P., Tvinnereim, A.R. & Harty, J.T. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science 290, 1354–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Kagi, D., Odermatt, B. & Mak, T.W. Homeostatic regulation of CD8+ T cells by perforin. Eur. J. Immunol. 29, 3262–3272 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Matloubian, M. et al. A role for perforin in downregulating T-cell responses during chronic viral infection. J Virol 73, 2527–36 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Ravkov, E.V., Myrick, C.M. & Altman, J.D. Immediate early effector functions of virus-specific CD8+CCR7+ memory cells in humans defined by HLA and CC chemokine ligand 19 tetramers. J. Immunol. 170, 2461–2468 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Faint, J.M. et al. Memory T cells constitute a subset of the human CD8+CD45RA+ pool with distinct phenotypic and migratory characteristics. J. Immunol. 167, 212–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. van Leeuwen, E.M. et al. Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells. J. Immunol. 169, 5838–5843 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Prlic, M., Lefrancois, L. & Jameson, S.C. Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J. Exp. Med. 195, F49–F52 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tan, J.T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pulendran, B. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev. 199, 227–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Schneider, J. et al. Induction of CD8+ T cells using heterologous prime-boost immunisation strategies. Immunol. Rev. 170, 29–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Robinson, H.L., Smith, J.M. & Amara, R.R. AIDS Vaccines: Heterologous Prime/Boost Strategies for raising Protective T Cell Responses. AIDS Rev. 2, 105–110 (2000).

    Google Scholar 

  61. Sumida, S.M. et al. Neutralizing antibodies and CD8+ T lymphocytes both contribute to immunity to adenovirus serotype 5 vaccine vectors. J. Virol. 78, 2666–2673 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shiver, J.W. & Emini, E.A. Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu. Rev. Med. 55, 355–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Reyes-Sandoval, A. et al. Human immunodeficiency virus type 1-specific immune responses in primates upon sequential immunization with adenoviral vaccine carriers of human and simian serotypes. J. Virol. 78, 7392–7399 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, Z.Y. et al. Overcoming immunity to a viral vaccine by DNA priming before vector boosting. J. Virol. 77, 799–803 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Allen, T.M. et al. Induction of AIDS virus-specific CTL activity in fresh, unstimulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA Prime/Modified vaccinia virus ankara boost regimen. J. Immunol. 164, 4968–4978 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Reimann, K.A. et al. A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS-like disease after in vivo passage in rhesus monkeys. J. Virol. 70, 6922–6928 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Barouch, D.H. et al. Augmentation and suppression of immune responses to an HIV-1 DNA vaccine by plasmid cytokine/Ig administration. J. Immunol. 161, 1875–1882 (1998).

    CAS  PubMed  Google Scholar 

  68. Santra, S. et al. Recombinant poxvirus boosting of DNA-primed rhesus monkeys augments peak but not memory T lymphocyte responses. Proc. Natl. Acad. Sci. USA 101, 11088–11093 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Appay, V. et al. HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 192, 63–75 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gruener, N.H. et al. Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. J. Virol. 75, 5550–5558 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barouch, D.H. et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 415, 335–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Kahn, P. AIDS Vaccines, From Monkeys to People: An Interview with John Shriver. in IAVI Report Vol. 7 10–12 (International AIDS Vaccine Initiative, New York, 2003).

    Google Scholar 

  73. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Waldrop, S.L., Pitcher, C.J., Peterson, D.M., Maino, V.C. & Picker, L.J. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Invest. 99, 1739–1750 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Waldrop, S.L., Davis, K.A., Maino, V.C. & Picker, L.J. Normal human CD4+ memory T cells display broad heterogeneity in their activation threshold for cytokine synthesis. J. Immunol. 161, 5284–5295 (1998).

    CAS  PubMed  Google Scholar 

  76. Lyons, A.B. & Parish, C.R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. De Rosa, S.C. et al. Vaccination in humans generates broad T cell cytokine responses. J. Immunol. 173, 5372–5380 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. MacGregor, R.R. et al. First human trial of a facilitated DNA plasmid vaccine for HIV-1: safety and host response. in Int. Conf. AIDS 11, 23 (abstract no. We.B.293) (1996).

    Google Scholar 

  79. MacGregor, R.R. et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Infect. Dis. 178, 92–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Moorthy, V.S. et al. Safety of DNA and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. Vaccine 21, 1995–2002 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Moorthy, V.S. et al. Safety and immunogenicity of DNA/modified vaccinia virus ankara malaria vaccination in African adults. J. Infect. Dis. 188, 1239–1244 (2003).

    Article  PubMed  Google Scholar 

  82. McConkey, S.J. et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccine virus Ankara in humans. Nat. Med. 9, 729–735 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Moorthy, V.S. et al. Phase 1 evaluation of 3 highly immunogenic prime-boost regimens, including a 12-month reboosting vaccination, for malaria vaccination in Gambian men. J. Infect. Dis. 189, 2213–2219 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Moore, A.C. & Hill, A.V. Progress in DNA-based heterologous prime-boost immunization strategies for malaria. Immunol. Rev. 199, 126–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. McShane, H. et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 10, 1240–1244 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Lai, C.J. & Monath, T.P. Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. Adv. Virus Res. 61, 469–509 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Kaech, S.M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415–422 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wyand, M.S., Manson, K.H., Garcia-Moll, M., Montefiori, D. & Desrosiers, R.C. Vaccine protection by a triple deletion mutant of simian immunodeficiency virus. J. Virol. 70, 3724–3733 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Amara, R.R. et al. Control of a Mucosal Challenge and Prevention of AIDS by a Multiprotein DNA/MVA Vaccine. Science 292, 69–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Shiver, J.W. et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency virus immunity. Nature 415, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Barouch, D.H. et al. Augmentation of immune responses to HIV-1 and simian immunodeficiency virus DNA vaccines by IL-2/Ig plasmid administration in rhesus monkeys. Proc. Natl. Acad. Sci. USA 97, 4192–4197 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barouch, D.H. et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290, 486–492 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to R. Ahmed, J. Altman, F. Villinger, V. Pillai, L. Lai and J. Zhao for critical review of the manuscript and to H. Drake-Perrow for administrative assistance. This work was supported by National Public Health Service Integrated Preclinical/Clinical AIDS Vaccine Development Grants P01-AI 43045 and P01-AI49364, the Emory/Atlanta Center for AIDS Research, P30 DA 12121, and the Yerkes National Primate Research Center base grant, P51 RR000165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harriet L Robinson.

Ethics declarations

Competing interests

Drs. Robinson and Amara have pending patents for HIV vaccines modeled on the DNA/MVA SHIV vaccine reported in this review. Dr. Robinson also holds a minor equity interest in GeoVax Inc., the company that has licensed the technology for a DNA/MVA HIV/AIDS vaccine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, H., Amara, R. T cell vaccines for microbial infections. Nat Med 11 (Suppl 4), S25–S32 (2005). https://doi.org/10.1038/nm1212

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing