Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices

Abstract

Microscale fabrication of three-dimensional (3D) extracellular matrices (ECMs) can be used to mimic the often inhomogeneous and anisotropic properties of native tissues1,2,3 and to construct in vitro cellular microenvironments4,5,6. Cellular contraction of fibrous natural ECMs (such as fibrin and collagen I) can detach matrices from their surroundings and destroy intended geometry7,8,9. Here, we demonstrate in situ collagen fibre assembly (the nucleation and growth of new collagen fibres from preformed collagen fibres at an interface) to anchor together multiple phases of cell-seeded 3D hydrogel-based matrices against cellular contractile forces. We apply this technique to stably interface multiple microfabricated 3D natural matrices (containing collagen I, Matrigel, fibrin or alginate); each phase can be seeded with cells and designed to permit cell spreading. With collagen-fibre-mediated interfacing, microfabricated 3D matrices maintain stable interfaces (the individual phases do not separate from each other) over long-term culture (at least 3 weeks) and support spatially restricted development of multicellular structures within designed patterns. The technique enables construction of well-defined and stable patterns of a variety of 3D ECMs formed by diverse mechanisms (including temperature-, ion- and enzyme-mediated crosslinking), and presents a simple approach to interface multiple 3D matrices for biological studies and tissue engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Use and characterization of in situ assembly of collagen fibres to integrate multiple 3D matrices.
Figure 2: Imaging of micropatterned HUVEC-seeded collagen within bulk hydrogel scaffolds.
Figure 3: Stabilization of patterned ECM by interfacing collagen fibres against cellular contractile forces.
Figure 4: Cellular morphology and behaviour in bulk and patterned phases.

Similar content being viewed by others

References

  1. Mikos, A. G. et al. Engineering complex tissues. Tissue Eng. 12, 3307–3339 (2006).

    Article  CAS  Google Scholar 

  2. Lee, C. S. et al. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 28, 2987–2993 (2007).

    Article  CAS  Google Scholar 

  3. Marenzana, M., Kelly, D. J., Prendergast, P. J. & Brown, R. A. A collagen-based interface construct for the assessment of cell-dependent mechanical integration of tissue surfaces. Cell Tissue Res. 327, 293–300 (2007).

    Article  CAS  Google Scholar 

  4. Nelson, C. M. & Tien, J. Microstructured extracellular matrices in tissue engineering and development. Curr. Opin. Biotechnol. 17, 518–523 (2006).

    Article  CAS  Google Scholar 

  5. Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006).

    Article  CAS  Google Scholar 

  6. Khademhosseini, A., Langer, R., Borenstein, J. & Vacanti, J. P. Microscale technologies for tissue engineering and biology. Proc. Natl Acad. Sci. USA 103, 2480–2487 (2006).

    Article  CAS  Google Scholar 

  7. Rowe, S. L. & Stegemann, J. P. Interpenetrating collagen-fibrin composite matrices with varying protein contents and ratios. Biomacromolecules 7, 2942–2948 (2006).

    Article  CAS  Google Scholar 

  8. Sieminski, A. L., Hebbel, R. P. & Gooch, K. J. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res. 297, 574–584 (2004).

    Article  CAS  Google Scholar 

  9. Meshel, A. S., Wei, Q., Adelstein, R. S. & Sheetz, M. P. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nature Cell Biol. 7, 157–164 (2005).

    Article  CAS  Google Scholar 

  10. Davis, G. E., Bayless, K. J. & Mavila, A. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat. Rec. 268, 252–275 (2002).

    Article  CAS  Google Scholar 

  11. Isenberg, B. C., Williams, C. & Tranquillo, R. T. Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann. Biomed. Eng. 34, 971–985 (2006).

    Article  Google Scholar 

  12. Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. USA 101, 18129–18134 (2004).

    Article  CAS  Google Scholar 

  13. Golden, A. P. & Tien, J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7, 720–725 (2007).

    Article  CAS  Google Scholar 

  14. Ling, Y. et al. A cell-laden microfluidic hydrogel. Lab Chip 7, 756–762 (2007).

    Article  CAS  Google Scholar 

  15. Tan, W. & Desai, T. A. Microscale multilayer cocultures for biomimetic blood vessels. J. Biomed. Mater. Res. A 72, 146–160 (2005).

    Article  Google Scholar 

  16. Albrecht, D. R., Underhill, G. H., Wassermann, T. B., Sah, R. L. & Bhatia, S. N. Probing the role of multicellular organization in three-dimensional microenvironments. Nature Methods 3, 369–375 (2006).

    Article  CAS  Google Scholar 

  17. Paguirigan, A. & Beebe, D. J. Gelatin based microfluidic devices for cell culture. Lab Chip 6, 407–413 (2006).

    Article  CAS  Google Scholar 

  18. Cheung, Y. K., Gillette, B. M., Zhong, M., Ramcharan, S. & Sia, S. K. Direct patterning of composite biocompatible microstructures using microfluidics. Lab Chip 7, 574–579 (2007).

    Article  CAS  Google Scholar 

  19. Albrecht, D. R., Underhill, G. H., Mendelson, A. & Bhatia, S. N. Multiphase electropatterning of cells and biomaterials. Lab Chip 7, 702–709 (2007).

    Article  CAS  Google Scholar 

  20. Choi, N. W. et al. Microfluidic scaffolds for tissue engineering. Nature Mater. 6, 908–915 (2007).

    Article  CAS  Google Scholar 

  21. Cabodi, M. et al. A microfluidic biomaterial. J. Am. Chem. Soc. 127, 13788–13789 (2005).

    Article  CAS  Google Scholar 

  22. Lee, P., Lin, R., Moon, J. & Lee, L. P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed. Microdevices 8, 35–41 (2006).

    Article  CAS  Google Scholar 

  23. Brightman, A. O. et al. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54, 222–234 (2000).

    Article  CAS  Google Scholar 

  24. Helm, C. L., Zisch, A. & Swartz, M. A. Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol. Bioeng. 96, 167–176 (2007).

    Article  CAS  Google Scholar 

  25. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  26. Boontheekul, T., Kong, H. J. & Mooney, D. J. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26, 2455–2465 (2005).

    Article  CAS  Google Scholar 

  27. Kamei, M. et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442, 453–456 (2006).

    Article  CAS  Google Scholar 

  28. Campbell, B. H., Clark, W. W. & Wang, J. H. A multi-station culture force monitor system to study cellular contractility. J. Biomech. 36, 137–140 (2003).

    Article  Google Scholar 

  29. Freyman, T. M., Yannas, I. V., Yokoo, R. & Gibson, L. J. Fibroblast contraction of a collagen-GAG matrix. Biomaterials 22, 2883–2891 (2001).

    Article  CAS  Google Scholar 

  30. Masuda, K., Sah, R. L., Hejna, M. J. & Thonar, E. J. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: The alginate-recovered-chondrocyte (ARC) method. J. Orthop. Res. 21, 139–148 (2003).

    Article  CAS  Google Scholar 

  31. Weinand, C. et al. Comparison of hydrogels in the in vivo formation of tissue-engineered bone using mesenchymal stem cells and beta-tricalcium phosphate. Tissue Eng. 13, 757–765 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge a Scientist Development Grant from the American Heart Association and an NSF CAREER award.

Author information

Authors and Affiliations

Authors

Contributions

B.M.G. and S.K.S. conceived the project, designed the experiments, analysed the data, developed the interpretations and wrote the manuscript. B.M.G. carried out the bulk of the experiments. J.A.J., B.T., G.J.Y., A.B. and M.Z. provided suggestions for developing the method and carried out the remainder of the experiments under the guidance of B.M.G. and S.K.S. All authors have agreed to the content of the manuscript, including the data as presented.

Corresponding author

Correspondence to Samuel K. Sia.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillette, B., Jensen, J., Tang, B. et al. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nature Mater 7, 636–640 (2008). https://doi.org/10.1038/nmat2203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmat2203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing