Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Visualization of macromolecular structures

Subjects

Abstract

Structural biology is rapidly accumulating a wealth of detailed information about protein function, binding sites, RNA, large assemblies and molecular motions. These data are increasingly of interest to a broader community of life scientists, not just structural experts. Visualization is a primary means for accessing and using these data, yet visualization is also a stumbling block that prevents many life scientists from benefiting from three-dimensional structural data. In this review, we focus on key biological questions where visualizing three-dimensional structures can provide insight and describe available methods and tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualizing a tyrosine kinase structure (PDB 1QCF)97.
Figure 2: Caution for beginners: symmetry in crystal structures.
Figure 3: Visualization of an NMR ensemble for SH3 (ref. 108).
Figure 4: Visualizing ligand-binding sites.
Figure 5: Visualization of RNA structure in one, two and three dimensions.
Figure 6: Visualizations of molecular motion.
Figure 7: Two examples of multiscale, hierarchical visualization.
Figure 8: Tangible models in research.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Berman, H., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 10, 980 (2003).

    CAS  PubMed  Google Scholar 

  2. Goddard, T.D. & Ferrin, T.E. Visualization software for molecular assemblies. Curr. Opin. Struct. Biol. 17, 587–595 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tate, J. Molecular visualization. Methods Biochem. Anal. 44, 135–158 (2003).

    CAS  PubMed  Google Scholar 

  4. Olson, A.J. & Pique, M.E. Visualizing the future of molecular graphics. SAR QSAR Environ. Res. 8, 233–247 (1998).

    CAS  PubMed  Google Scholar 

  5. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Richardson, D.C. & Richardson, J.S. The kinemage: a tool for scientific communication. Protein Sci. 1, 3–9 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Donoghue, S.I., Meyer, J.E.W., Schafferhans, A. & Fries, K. The SRS 3D module: integrating sequence, structure, and annotation data. Bioinformatics 20, 2476–2478 (2004).

    CAS  PubMed  Google Scholar 

  8. Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 33 (Database issue), D154–D159 (2005).

    CAS  PubMed  Google Scholar 

  9. Schafferhans, A., Meyer, J.E.W. & O'Donoghue, S.I. The PSSH database of alignments between protein sequences and tertiary structures. Nucleic Acids Res. 31, 494–498 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Arnold, K. et al. The Protein Model Portal. J. Struct. Funct. Genomics 10, 1–8 (2009).

    CAS  PubMed  Google Scholar 

  11. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Krieger, E., Nabuurs, S.B. & Vriend, G. Homology modeling. Methods Biochem. Anal. 44, 509–523 (2003).

    CAS  PubMed  Google Scholar 

  13. Cozzetto, D. et al. Evaluation of template-based models in CASP8 with standard measures. Proteins 77 (Suppl 9), 18–28 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ben-David, M. et al. Assessment of CASP8 structure predictions for template free targets. Proteins 77 (Suppl 9), 50–65 (2009).

    CAS  PubMed  Google Scholar 

  15. Bradley, P., Misura, K.M. & Baker, D. Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871 (2005).

    CAS  PubMed  Google Scholar 

  16. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  17. Wang, Y., Geer, L.Y., Chappey, C., Kans, J.A. & Bryant, S.H. Cn3D: sequence and structure views for Entrez. Trends Biochem. Sci. 25, 300–302 (2000).

    CAS  PubMed  Google Scholar 

  18. Hartshorn, M.J. AstexViewer: a visualisation aid for structure-based drug design. J. Comput. Aided Mol. Des. 16, 871–881 (2002).

    CAS  PubMed  Google Scholar 

  19. Gille, C. & Frommel, C. STRAP: editor for STRuctural Alignments of Proteins. Bioinformatics 17, 377–378 (2001).

    CAS  PubMed  Google Scholar 

  20. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    CAS  PubMed  Google Scholar 

  21. Zanzoni, A., Ausiello, G., Via, A., Gherardini, P.F. & Helmer-Citterich, M. Phospho3D: a database of three-dimensional structures of protein phosphorylation sites. Nucleic Acids Res. 35 Database issue, D229–D231 (2007).

    CAS  PubMed  Google Scholar 

  22. Procter, J.B. et al. Visualization of multiple alignments, phylogenies and gene family evolution. Nat. Methods 7, S16–S25 (2010).

    CAS  PubMed  Google Scholar 

  23. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

  24. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    CAS  PubMed  Google Scholar 

  25. Sanner, M.F. A component-based software environment for visualizing large macromolecular assemblies. Structure 13, 447–462 (2005).

    CAS  PubMed  Google Scholar 

  26. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). Widely used and versatile tool for displaying, animating and analyzing large biomolecular systems. Particularly suited for MD simulations.

    CAS  PubMed  Google Scholar 

  27. Prlic, A., Down, T.A. & Hubbard, T.J. Adding some SPICE to DAS. Bioinformatics 21 (Suppl. 2), ii40–ii41 (2005).

    CAS  PubMed  Google Scholar 

  28. Huehne, R. & Suehnel, J. The Jena Library of Biological Macromolecules – JenaLib. Preprint at 〈http://precedings.nature.com/documents/3114/version/1/〉 (2009).

  29. Laskowski, R.A. PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res. 29, 221–222 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gille, C. Structural interpretation of mutations and SNPs using STRAP-NT. Protein Sci. 15, 208–210 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gabdoulline, R.R., Ulbrich, S., Richter, S. & Wade, R.C. ProSAT2–protein structure annotation server. Nucleic Acids Res. 34 (Web Server issue), W79–W83 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bordner, A.J. & Gorin, A.A. Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces. BMC Bioinformatics 9, 234 (2008).

    PubMed  PubMed Central  Google Scholar 

  33. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS  PubMed  Google Scholar 

  34. Kolodny, R., Koehl, P. & Levitt, M. Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures. J. Mol. Biol. 346, 1173–1188 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 29–32 (1996).

    CAS  PubMed  Google Scholar 

  36. Russell, R.B. & Barton, G.J. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins 14, 309–323 (1992).

    CAS  PubMed  Google Scholar 

  37. Theobald, D.L. & Wuttke, D.S. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures. Bioinformatics 22, 2171–2172 (2006).

    CAS  PubMed  Google Scholar 

  38. Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983).

    CAS  PubMed  Google Scholar 

  39. Sippl, M.J. Boltzmann's principle, knowledge-based mean fields, and protein folding. An approach to the computational determination of protein structures. J. Comput. Aided Mol. Des. 7, 473–501 (1993).

    CAS  PubMed  Google Scholar 

  40. Wesson, L. & Eisenberg, D. Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Sci. 1, 227–235 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanner, M.F., Olson, A.J. & Spehner, J.-C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Vriend, G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56 (1990).

    CAS  PubMed  Google Scholar 

  43. Hunter, W.N. Structure-based ligand design and the promise held for antiprotozoan drug discovery. J. Biol. Chem. 284, 11749–11753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Harris, R., Olson, A.J. & Goodsell, D.S. Automated prediction of ligand-binding sites in proteins. Proteins 70, 1506–1517 (2008).

    CAS  PubMed  Google Scholar 

  45. Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28, 849–857 (1985).

    CAS  PubMed  Google Scholar 

  46. Campbell, S.J., Gold, N.D., Jackson, R.M. & Westhead, D.R. Ligand binding: functional site location, similarity and docking. Curr. Opin. Struct. Biol. 13, 389–395 (2003).

    CAS  PubMed  Google Scholar 

  47. Lichtarge, O., Bourne, H.R. & Cohen, F.E. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257, 342–358 (1996).

    CAS  PubMed  Google Scholar 

  48. Morgan, D.H., Kristensen, D.M., Mittelman, D. & Lichtarge, O. ET viewer: an application for predicting and visualizing functional sites in protein structures. Bioinformatics 22, 2049–2050 (2006).

    CAS  PubMed  Google Scholar 

  49. Laskowski, R.A., Watson, J.D. & Thornton, J.M. ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 33 (Web Server issue), W89–W93 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kinoshita, K., Murakami, Y. & Nakamura, H. eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape. Nucleic Acids Res. 35 (Web Server issue), W398–W402 (2007).

    PubMed  PubMed Central  Google Scholar 

  51. Wolber, G. & Kosara, R. Pharmacophores from macromolecular complexes with LigandScout. in Pharmacophores and Pharmacophore Searches (ed. Langer, T. & Hoffmann, R.D.) vol. 32, 131–150 (Wiley-VCH, Weinheim, Germany, 2006).

  52. Vulpetti, A. & Pevarello, P. An analysis of the binding modes of ATP-competitive CDK2 inhibitors as revealed by X-ray structures of protein-inhibitor complexes. Curr. Med. Chem. Anticancer Agents 5, 561–573 (2005).

    CAS  PubMed  Google Scholar 

  53. Zou, J. et al. Towards more accurate pharmacophore modeling: Multicomplex-based comprehensive pharmacophore map and most-frequent-feature pharmacophore model of CDK2. J. Mol. Graph. Model. 27, 430–438 (2008).

    CAS  PubMed  Google Scholar 

  54. Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996).

    CAS  PubMed  Google Scholar 

  55. Morris, G.M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zoete, V., Grosdidier, A. & Michielin, O. Docking, virtual high throughput screening and in silico fragment-based drug design. J. Cell. Mol. Med. 13, 238–248 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Karkola, S., Alho-Richmond, S. & Wahala, K. Pharmacophore modelling of 17β-HSD1 enzyme based on active inhibitors and enzyme structure. Mol. Cell. Endocrinol. 301, 225–228 (2009).

    CAS  PubMed  Google Scholar 

  58. Hendlich, M. Databases for protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 54, 1178–1182 (1998).

    CAS  PubMed  Google Scholar 

  59. Gunther, J., Bergner, A., Hendlich, M. & Klebe, G. Utilising structural knowledge in drug design strategies: applications using Relibase. J. Mol. Biol. 326, 621–636 (2003). Provides several detailed examples showing how Relibase can aid structure-based drug design.

    CAS  PubMed  Google Scholar 

  60. Michalsky, E., Dunkel, M., Goede, A. & Preissner, R. SuperLigands—a database of ligand structures derived from the Protein Data Bank. BMC Bioinformatics 6, 122 (2005).

    PubMed  PubMed Central  Google Scholar 

  61. Xie, L., Li, J. & Bourne, P.E. Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLOS Comput. Biol. 5, e1000387 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. Kinnings, S.L. et al. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLOS Comput. Biol. 5, e1000423 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. Kuhn, M., von Mering, C., Campillos, M., Jensen, L.J. & Bork, P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 36 (Database issue), D684–D688 (2008). Useful and easy-to-use tool for visualizing graphical networks showing interactions between proteins and small molecules. Underlying data is consolidated from many sources, including PDB.

    CAS  PubMed  Google Scholar 

  64. Gehlenborg, N. et al. Visualization of omics data for systems biology. Nat. Methods 7, S56–S68 (2010).

    CAS  PubMed  Google Scholar 

  65. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995). Widely used for generating simplified, two-dimensional schematic diagrams of protein-ligand interactions from the three-dimensional coordinates.

    CAS  PubMed  Google Scholar 

  66. Stierand, K., Maass, P.C. & Rarey, M. Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics 22, 1710–1716 (2006).

    CAS  PubMed  Google Scholar 

  67. Clark, A.M. & Labute, P. 2D depiction of protein-ligand complexes. J. Chem. Inf. Model. 47, 1933–1944 (2007).

    CAS  PubMed  Google Scholar 

  68. Berman, H.M. et al. The nucleic acid database: a comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, 751–759 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jossinet, F. & Westhof, E. Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21, 3320–3321 (2005).Offers the most complete set of features for viewing RNA structures. Recommended for advanced users. Also available by web services.

    CAS  PubMed  Google Scholar 

  70. Ringe, D. & Petsko, G.A. The 'glass transition' in protein dynamics: what it is, why it occurs, and how to exploit it. Biophys. Chem. 105, 667–680 (2003).

    CAS  PubMed  Google Scholar 

  71. Flores, S. et al. The Database of Macromolecular Motions: new features added at the decade mark. Nucleic Acids Res. 34 (Database issue), D296–D301 (2006).

    CAS  PubMed  Google Scholar 

  72. Maiti, R., Van Domselaar, G.H. & Wishart, D.S. MovieMaker: a web server for rapid rendering of protein motions and interactions. Nucleic Acids Res. 33 (Web Server issue), W358–W362 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chennubhotla, C., Rader, A.J., Yang, L.W. & Bahar, I. Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies. Phys. Biol. 2, S173–S180 (2005).

    CAS  PubMed  Google Scholar 

  74. Lindahl, E., Azuara, C., Koehl, P. & Delarue, M. NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res. 34 (Web Server issue), W52–W56 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Eyal, E., Yang, L.W. & Bahar, I. Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics 22, 2619–2627 (2006).

    CAS  PubMed  Google Scholar 

  76. Seeliger, D. & De Groot, B.L. tCONCOORD-GUI: visually supported conformational sampling of bioactive molecules. J. Comput. Chem. 30, 1160–1166 (2009).

    CAS  PubMed  Google Scholar 

  77. Thorpe, M.F., Lei, M., Rader, A.J., Jacobs, D.J. & Kuhn, L.A. Protein flexibility and dynamics using constraint theory. J. Mol. Graph. Model. 19, 60–69 (2001).

    CAS  PubMed  Google Scholar 

  78. Gerstein, M., Lesk, A.M. & Chothia, C. Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6749 (1994).

    CAS  PubMed  Google Scholar 

  79. Zhao, Y., Stoffler, D. & Sanner, M. Hierarchical and multi-resolution representation of protein flexibility. Bioinformatics 22, 2768–2774 (2006).

    CAS  PubMed  Google Scholar 

  80. Finocchiaro, G., Wang, T., Hoffmann, R., Gonzalez, A. & Wade, R.C. DSMM: a database of simulated molecular motions. Nucleic Acids Res. 31, 456–457 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kehl, C., Simms, A.M., Toofanny, R.D. & Daggett, V. Dynameomics: a multi-dimensional analysis-optimized database for dynamic protein data. Protein Eng. Des. Sel. 21, 379–386 (2008).

    CAS  PubMed  Google Scholar 

  82. Walter, T. et al. Visualization of image data from cells to organisms. Nat. Methods 7, S26–S41 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Goodsell, D.S. Visual methods from atoms to cells. Structure 13, 347–354 (2005).

    CAS  PubMed  Google Scholar 

  84. Goodsell, D.S. Making the step from chemistry to biology and back. Nat. Chem. Biol. 3, 681–684 (2007).

    CAS  PubMed  Google Scholar 

  85. McGill, G. Molecular movies. coming to a lecture near you. Cell 133, 1127–1132 (2008).

    CAS  PubMed  Google Scholar 

  86. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V. & Hart, J.C. The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35, 64–72 (1992).

    Google Scholar 

  87. Gillet, A., Sanner, M.F., Stoffler, D. & Olson, A.J. Tangible interfaces for structural molecular biology. Structure 13, 483–491 (2005).

    CAS  PubMed  Google Scholar 

  88. Olson, A.J., Hu, Y.H. & Keinan, E. Chemical mimicry of viral capsid self-assembly. Proc. Natl. Acad. Sci. USA 104, 20731–20736 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Herman, T. et al. Tactile teaching: exploring protein structure/function using physical models. Biochem. Mol. Biol. Educ. 34, 247–254 (2006).

    CAS  PubMed  Google Scholar 

  90. Creem, S.H. & Proffitt, D.R. Grasping objects by their handles: a necessary interaction between cognition and action. J. Exp. Psychol. Hum. Percept. Perform. 27, 218–228 (2001).

    CAS  PubMed  Google Scholar 

  91. Kozma, R. The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction 13, 205–226 (2003).

    Google Scholar 

  92. Zhang, J. & Patel, V.L. Distributed cognition, representation, and affordance. Pragmatics & Cognition 14, 333–341 (2006).

    Google Scholar 

  93. Nielsen, C.B., Cantor, M., Dubchak, I., Gordon, D. & Wang, T. Visualizing genomes: techniques and challenges. Nat. Methods 7, S5–S15 (2009).

    Google Scholar 

  94. Hodis, E. et al. Proteopedia—a scientific 'wiki' bridging the rift between three-dimensional structure and function of biomacromolecules. Genome Biol. 9, R121 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Cook, K., Earnshaw, R. & Stasko, J. Discovering the unexpected. IEEE Comput. Graph. Appl. 27, 15–19 (2007).

    PubMed  Google Scholar 

  96. Kerren, A., Stasko, J.T., Fekete, J.D. & North, C. Information Visualization (Springer, New York, 2008).

  97. Schindler, T. et al. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol. Cell 3, 639–648 (1999).

    CAS  PubMed  Google Scholar 

  98. Xu, W., Harrison, S.C. & Eck, M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    CAS  PubMed  Google Scholar 

  99. Lam, P.Y. et al. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 263, 380–384 (1994).

    CAS  PubMed  Google Scholar 

  100. Gangloff, M. et al. Crystal structure of a mutant hERα ligand-binding domain reveals key structural features for the mechanism of partial agonism. J. Biol. Chem. 276, 15059–15065 (2001).

    CAS  PubMed  Google Scholar 

  101. Brzozowski, A.M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    CAS  PubMed  Google Scholar 

  102. Robertson, M.P. et al. The structure of a rigorously conserved RNA element within the SARS virus genome. PLoS Biol. 3, e5 (2005).

    PubMed  Google Scholar 

  103. Petrek, M. et al. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316 (2006).

    PubMed  PubMed Central  Google Scholar 

  104. Spaar, A., Dammer, C., Gabdoulline, R.R., Wade, R.C. & Helms, V. Diffusional encounter of barnase and barstar. Biophys. J. 90, 1913–1924 (2006).

    CAS  PubMed  Google Scholar 

  105. Al-Amoudi, A., Diez, D.C., Betts, M.J. & Frangakis, A.S. The molecular architecture of cadherins in native epidermal desmosomes. Nature 450, 832–837 (2007).

    CAS  PubMed  Google Scholar 

  106. Boggon, T.J. et al. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002).

    CAS  PubMed  Google Scholar 

  107. Marina, A., Waldburger, C.D. & Hendrickson, W.A. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. EMBO J. 24, 4247–4259 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mal, T.K., Matthews, S.J., Kovacs, H., Campbell, I.D. & Boyd, J. Some NMR experiments and a structure determination employing a {15N,2H} enriched protein. J. Biomol. NMR 12, 259–276 (1998).

    CAS  PubMed  Google Scholar 

  109. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  110. Sayle, R.A. & Milner-White, E.J. RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20, 374 (1995).

    CAS  PubMed  Google Scholar 

  111. Wiederstein, M. & Sippl, M.J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35 (Web Server issue), W407–W410 (2007).

    PubMed  PubMed Central  Google Scholar 

  112. Rhodes, G. Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models 3rd edn. (Academic Press, 2006).

  113. Glykos, N.M. On the application of molecular-dynamics simulations to validate thermal parameters and to optimize TLS-group selection for macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 63, 705–713 (2007).

    CAS  PubMed  Google Scholar 

  114. Brünger, A.T. The free R factor: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    PubMed  Google Scholar 

  115. Kleywegt, G.J. et al. The Uppsala electron-density server. Acta Crystallogr. D Biol. Crystallogr. 60, 2240–2249 (2004).

    PubMed  Google Scholar 

  116. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  117. Jones, T.A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 115, 157–171 (1985).

    CAS  PubMed  Google Scholar 

  118. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    PubMed  Google Scholar 

  119. Levin, E.J., Kondrashov, D.A., Wesenberg, G.E. & Phillips, G.N. Jr. Ensemble refinement of protein crystal structures: validation and application. Structure 15, 1040–1052 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rieping, W., Habeck, M. & Nilges, M. Inferential structure determination. Science 309, 303–306 (2005).

    CAS  PubMed  Google Scholar 

  121. Nederveen, A.J. et al. RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins 59, 662–672 (2005).

    CAS  PubMed  Google Scholar 

  122. Selenko, P. & Wagner, G. Looking into live cells with in-cell NMR spectroscopy. J. Struct. Biol. 158, 244–253 (2007).

    CAS  PubMed  Google Scholar 

  123. Eliezer, D. Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 19, 23–30 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tugarinov, V., Choy, W.-Y., Orekhov, V.Y. & Kay, L.E. Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc. Natl. Acad. Sci. USA 102, 622–627 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Markwick, P.R., Malliavin, T. & Nilges, M. Structural biology by NMR: structure, dynamics, and interactions. PLOS Comput. Biol. 4, e1000168 (2008).

    PubMed  PubMed Central  Google Scholar 

  126. Wang, L. & Sigworth, F.J. Cryo-EM and single particles. Physiology (Bethesda) 21, 13–18 (2006).

    Google Scholar 

  127. Frank, J. Three-dimensional Electron Microscopy of Macromolecular Assemblies 2nd edn. (Oxford University Press, 2006).

  128. Frank, J. ed. Electron Tomography 2nd edn. (Springer, 2006).

  129. Yu, X., Jin, L. & Zhou, Z.H. 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453, 415–419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to M. Berynskyy and L. Biedermannova for assistance with Figure 6. This work was partly supported by the European Union Framework Programme 6 grant 'TAMAHUD' (LSHC-CT-2007-037472). R.C.W. gratefully acknowledges the support of the Klaus Tschira Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seán I O'Donoghue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Table 1 (PDF 729 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Donoghue, S., Goodsell, D., Frangakis, A. et al. Visualization of macromolecular structures. Nat Methods 7 (Suppl 3), S42–S55 (2010). https://doi.org/10.1038/nmeth.1427

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmeth.1427

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics